Three cyanobutadiene isomers have been synthesized and their rotational spectra analyzed in the 130-375 GHz frequency range. These species, which are close analogues of known interstellar molecules and are isomers of the heterocyclic aromatic molecule pyridine (CHN), offer the opportunity of revealing important insights concerning the chemistry in astronomical environments. The conformers of -1-cyano-1,3-butadiene and -1-cyano-1,3-butadiene are observed, while both the and conformers of 4-cyano-1,2-butadiene are evident in the rotational spectra. Over 1000 transitions for -1-cyano-1,3-butadiene and for 4-cyano-1,2-butadiene are fit to an octic, distorted-rotor Hamiltonian with low uncertainty (<50 kHz). Although neither -1-cyano-1,3-butadiene nor 4-cyano-1,2-butadiene can be fully treated with a distorted-rotor Hamiltonian in this frequency range, we provide herein minimally perturbed, single-state least-squares fits of over 1000 transitions for each species, yielding sets of spectroscopic constants that are expected to enable accurate prediction of high-intensity transitions at frequencies up to 370 GHz for both isomers. The assigned transitions and spectroscopic constants for these cyanobutadienes have already enabled the identification of two isomers in harsh reaction environments and should be sufficient to enable their identification in astronomical environments by radio astronomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c03777 | DOI Listing |
H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
High resolution infrared spectra of water-CO dimers are further studied using tunable infrared sources to probe a pulsed slit jet supersonic expansion. The relatively weak transition of DO-CO in the DO ν fundamental region (≈2760 cm) is observed for the first time, as are various spectra of DO-CO. Combination bands involving the intermolecular in plane geared bend (disrotatory) mode are observed for HO-CO (≈1642, 2397 cm) in the HO ν and CO ν regions, for HDO-CO (≈2761 cm) in the HDO ν region, and for DO-CO (≈2386, 2705 and 2821 cm) in the CO ν, DO ν, and DO ν regions.
View Article and Find Full Text PDFMolecules
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany.
A new method for the precise semiempirical determination of the basic parameters (structural parameters and parameters of the intramolecular potential energy surface, PES) of a molecule on the basis of highly accurate experimental data from the microwave and submillimeter-wave regions is suggested. The options and advantages of this method in comparison with the other methods of molecular PES determination are discussed using a diatomic molecule as an appropriate illustration. The HCl molecule is exploited as a suitable example.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA.
The hydroxysilylene (HSiOH) molecule has been spectroscopically identified in the gas phase for the first time. This highly reactive species was produced in a twin electric discharge jet using separate precursor streams of 16O2/18O2 and Si2H6/Si2D6, both diluted in high pressure argon. The strongest and most stable laser induced fluorescence (LIF) signals were obtained by applying an electric discharge to each of the precursor streams and then merging the discharge products just prior to expansion into vacuum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!