A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reductive dissolution of phosphorus associated with iron-oxides during saturation in agricultural soil profiles. | LitMetric

Reductive dissolution of phosphorus associated with iron-oxides during saturation in agricultural soil profiles.

J Environ Qual

Teagasc Crops, Environment and Land Use Programme, Johnstown Castle, Wexford, Ireland.

Published: September 2021

In soils with a fragipan or poor permeability, water may remain in a soil profile long enough to make it anoxic and reductive. The reductive dissolution of iron (Fe)- and manganese (Mn)-oxides can release associated phosphorus (P). Therefore, the dissolved P would be vulnerable to subsurface flow and could contaminate nearby streams. It was hypothesized that single rainfall events could cause subsurface P concentrations to increase via reductive dissolution in wet winter-spring conditions. Also, dissolution-being microbially mediated-would be buffered by the presence of nitrate (NO ), which is preferred as an electron acceptor over Fe and Mn in microbial reactions. Unsaturated zone monitoring occurred from May to September in 2017 and 2019, using Teflon suction cups below the surface of a grassland soil in New Zealand. Events in July and August in 2017 and 2019 resulted in reducing conditions [Fe(III)/sulfate-reducing] and up to 77 and 96% greater P and Fe release, respectively. In an additional experiment in 2019, 100 mm of flood irrigation was applied, and 10 mg NO -N + carbon was injected into half the cups at the site. The other cups received no N. Cups treated with N yielded up to 45% total dissolved P and 21% less Fe than the no-N cups. A laboratory incubation of soils from the site confirmed that NO inhibited P release. This effect may act to decrease the amount of P lost in subsurface flow in systems regularly fertilized with N but should not be relied on as a method to mitigate P losses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20256DOI Listing

Publication Analysis

Top Keywords

reductive dissolution
12
subsurface flow
8
2017 2019
8
cups
5
reductive
4
dissolution phosphorus
4
phosphorus associated
4
associated iron-oxides
4
iron-oxides saturation
4
saturation agricultural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!