Objective: The goal of the present study was to determine whether spike and wave discharges (SWDs) and SWDs with superimposed fast ripples (SWDFRs) could be biomarkers of posttraumatic epileptogenesis.
Methods: Fluid percussion injury was conducted on 13-14-week old male Sprague Dawley rats. Immediately after traumatic brain injury (TBI), they were implanted with microelectrodes in the neocortex, hippocampus, and striatum bilaterally. Age-matched sham rats with the same electrode implantation montage acted as controls. Wideband brain electrical activity was recorded intermittently from Day 1 of TBI, and continued from 2 to 21 weeks after TBI. SWD and SWDFR analysis was performed during the first 2 weeks to investigate whether the occurrence of this pattern predicted development of epilepsy. The remaining 3-21 weeks were used for identifying which rats became epileptic (E+ group) and which did not (E- group).
Results: The E+ group (n = 9) showed a significant increase in SWD rate in prefrontal cortex during Weeks 1 and 2 after TBI. The E- group showed a significant increase in SWD rate only in the second week. One hundred percent of rats in the E+ group displayed SWDFRs beginning from the first week after TBI. The SWDFR pattern was observed in all recorded brain areas: prefrontal and perilesional cortices, hippocampus, and striatum. None of rats in the E- group showed coexistence of fast ripples with SWDs.
Significance: Occurrence of SWDFRs after TBI, but not an increase in the rate of SWDs, could be a noninvasive electroencephalographic biomarker of posttraumatic epileptogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349888 | PMC |
http://dx.doi.org/10.1111/epi.16958 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!