Multiple independent sequence variants of the locus have been associated with telomere length and cancer risks in genome-wide association studies. Here, we identified an intronic variable number tandem repeat, VNTR2-1, as an enhancer-like element, which activated hTERT transcription in a cell in a chromatin-dependent manner. VNTR2-1, consisting of 42-bp repeats with an array of enhancer boxes, cooperated with the proximal promoter in the regulation of hTERT transcription by basic helix-loop-helix transcription factors and maintained hTERT expression during embryonic stem-cell differentiation. Genomic deletion of VNTR2-1 in MelJuSo melanoma cells markedly reduced hTERT transcription, leading to telomere shortening, cellular senescence, and impairment of xenograft tumor growth. Interestingly, VNTR2-1 lengths varied widely in human populations; alleles with shorter VNTR2-1 were underrepresented in African American centenarians, indicating its role in human aging. Therefore, this polymorphic element is likely a missing link in the telomerase regulatory network and a molecular basis for genetic diversities of telomere homeostasis and age-related disease susceptibilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256013 | PMC |
http://dx.doi.org/10.1073/pnas.2019043118 | DOI Listing |
Asian Pac J Cancer Prev
December 2024
College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
Background And Objective: Acute myeloid leukemia (AML) is a hematological malignancy marked by the abnormal proliferation of myeloid precursor cells (blasts) in the bone marrow and peripheral blood, leading to disrupted blood cell production. The telomerase reverse transcriptase (hTERT), a key component of the telomerase enzyme, is often overexpressed in various cancers, including AML, contributing to cellular immortality. This study aimed to investigate the expression levels of the hTERT gene, serum protein concentrations, and hematological parameters in newly diagnosed AML patients, comparing these findings to AML patients in remission and healthy controls.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, China. Electronic address:
Aims: High telomerase activity has been detected in over 85 % of tumors, with the activation of hTERT being the most crucial mechanism for re-establishing telomerase activity. Activation of hTERT maintains telomere length in cells, enabling cancer cells to proliferate indefinitely. Nevertheless, the specific mechanism of telomerase activation in non-small cell lung cancer (NSCLC) remains unclear, and post-transcriptional regulation of hTERT could be a potential activation mechanism.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia; University of Melbourne Department of Obstetrics and Gynaecology and Newborn Health, Royal Women's Hospital, Parkville, VIC, 3052, Australia. Electronic address:
Increasing evidence shows extracellular vesicles (EVs) are primarily responsible for the beneficial effects of cell-based therapies. EVs derived from mesenchymal stromal cells (MSCs) show promise as a source of EVs for cell-free therapies. The human placental fetal-maternal interface is a rich and abundant source of MSCs from which EVs can be isolated.
View Article and Find Full Text PDFMol Med Rep
February 2025
Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK.
Tissue factor (TF) possesses additional physiological functions beyond initiating the coagulation cascade. Cellular signals initiated by cellular TF or on contact with TF‑containing microvesicles, contribute to wound healing through regulating a number of cellular properties and functions. TF regulates the cell cycle checkpoints, however the underlying signalling mechanisms have not been determined.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
Studying the effect of small chemical molecules on stem cell characteristics under normoxia and hypoxia conditions is crucial to discovering the best conditions for effective biomedical applications. This study aimed to investigate the effect of Quercetin (QC; a flavonoid) in the presence of CoCl as a mimicking hypoxia chemical on the biological features of human telomerase reverse transcription-immortalized mesenchymal stem cell (hTERT-MSC) lines. The effect of CoCl, QC, and their combination on the viability, proliferation, and migration of hTERT-MSCs were evaluated by MTT, Trypan-blue staining and cell counting by hemocytometer, and in vitro wound healing assays, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!