Ostreopsis cf. ovata is a benthic and ovatoxin-producing dinoflagellate proliferating yearly along the Mediterranean coasts where blooms have been related to human illness and unusual mortality of marine organisms. The spreading of O. cf. ovata in this temperate area has been linked to global changes and its consequences such as the increase of temperature or light intensities. In the present study, an experimental design using batch cultures of pre-acclimated cells of a strain of O. cf. ovata isolated from Villefranche-sur-Mer (NW Mediterranean Sea, France), was implemented to investigate the combined effect of temperature (23, 27 and 30 °C) and light intensity (200, 400 and 600 µmol ms) on the growth, metabolome and OVTX content. Both light intensity and temperature affected the growth as significantly higher growth rates were obtained under 400 and 600 µmol ms while the maximum values were obtained at 27 °C (0.48 d). Metabolomic analyses highlighted a clear effect only for temperature that may correspond to two different strategies of acclimation to suboptimal temperatures. Significant features (such as carotenoid and lipids) modified by the temperature and/or light conditions were annotated. Only temperature induced a significant change of OVTX content with higher values measured at the lowest temperature of 23 °C (29 - 36 pg cell). In a context of global changes, these results obtained after acclimation suggest that the increase of temperature might favor the proliferation of less toxic cells. However, in the light of the intraspecific variability of O. cf. ovata, further studies will be necessary to test this hypothesis. This study also highlighted the lack of knowledge about the metabolome composition of such non-model organisms that impairs data interpretation. There is a need to study more deeply the metabolome of toxic dinoflagellates to better understand how they can acclimate to a changing environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2021.102060DOI Listing

Publication Analysis

Top Keywords

light intensity
12
temperature
9
temperature light
8
growth metabolome
8
ostreopsis ovata
8
global changes
8
increase temperature
8
400 600 µmol
8
ovtx content
8
light
6

Similar Publications

Background: Urogenital schistosomiasis is a persistent public health problem in many rural areas of Yemen. Since 2014, epidemiology has not been assessed in Amran governorate, north of Yemen, where is known to be highly endemic. Therefore, this study determined the prevalence and risk factors associated with infection among schoolchildren in Kharif district of the governorate.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

Developing Orthogonal Fluorescent RNAs for Photoactive Dual-color Imaging of RNAs in Live Cells.

Angew Chem Int Ed Engl

January 2025

Hunan University, College of Chemistry and Chemical Engineering, Yuelushan, Changsha, Hunan, 410082, P.R.China, 410082, Changsha, CHINA.

Fluorogenic RNA aptamers have revolutionized the visualization of RNAs within complex cellular processes. A representative category of them employs the derivatives of green fluorescent protein chromophore, 4-hydroxybenzlidene imidazolinone (HBI), as chromophores. However, the structural homogeneity of their chromophoric backbones causes severe cross-reactivity with other homologous chromophores.

View Article and Find Full Text PDF

Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!