Achievable information rates of optical communication systems are inherently limited by nonlinear distortions due to the Kerr effect occurred in optical fibres. These nonlinear impairments become more significant for communication systems with larger transmission bandwidths, closer channel spacing and higher-order modulation formats. In this paper, the efficacy of nonlinearity compensation techniques, including both digital back-propagation and optical phase conjugation, for enhancing achievable information rates in lumped EDFA- and distributed Raman-amplified fully-loaded C -band systems is investigated considering practical transceiver limitations. The performance of multiple modulation formats, such as dual-polarisation quadrature phase shift keying (DP-QPSK), dual-polarisation 16 -ary quadrature amplitude modulation (DP-16QAM), DP-64QAM and DP-256QAM, has been studied in C -band systems with different transmission distances. It is found that the capabilities of both nonlinearity compensation techniques for enhancing achievable information rates strongly depend on signal modulation formats as well as target transmission distances.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.415753DOI Listing

Publication Analysis

Top Keywords

communication systems
12
achievable rates
12
modulation formats
12
nonlinearity compensation
8
compensation techniques
8
enhancing achievable
8
c -band systems
8
transmission distances
8
systems
5
rates
4

Similar Publications

In the production sector, the usefulness of predictive systems as a tool for management and decision-making is well known. In the agricultural sector, a correct economic balance of the farm depends on making the right decisions. For this purpose, having information in advance on crop yields is an extraordinary help.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

Objective: This study aimed to explore the utilization of a fine-tuned language model to extract expressions related to the Age-Friendly Health Systems 4M Framework (What Matters, Medication, Mentation, and Mobility) from nursing home worker text messages, deploy automated mapping of these expressions to a taxonomy, and explore the created expressions and relationships.

Materials And Methods: The dataset included 21 357 text messages from healthcare workers in 12 Missouri nursing homes. A sample of 860 messages was annotated by clinical experts to form a "Gold Standard" dataset.

View Article and Find Full Text PDF

Optical metasurfaces, components composed of artificial nanostructures, are recognized for pushing boundaries of wavefront manipulation while maintaining a lightweight, compact design that surpasses conventional optics. Such advantages align with the current trends in optical systems, which demand compact communication devices and immersive holographic projectors, driving significant investment from the industry. Although interest in commercialization of optical metasurfaces has steadily grown since the initial breakthrough with diffraction-limited focusing, their practical applications have remained limited by challenges such as, massive-production yield, absence of standardized evaluation methods, and constrained design methodology.

View Article and Find Full Text PDF

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!