AI Article Synopsis

  • Refraction is a key optical phenomenon that helps manipulate light, although traditional lenses are limited by material properties.
  • Researchers have developed an innovative gradient-refractive-index (GRIN) metalens that operates at a very high refractive index, improving the directivity of terahertz waves from a resonant tunneling diode by 4.2 times.
  • This new metalens can easily integrate with terahertz continuous-wave sources, paving the way for advanced applications in 6G wireless communications and imaging, using high refractive index metasurfaces instead of conventional materials.

Article Abstract

Refraction in materials is a fundamental phenomenon in optics and is a factor in the manipulation of light, such as wavefront shaping and beam control. However, conventional optical lenses incorporated in numerous optical sources are made of naturally occurring materials, and material properties predetermine the lens performance. For the development of terahertz flat optics, we experimentally demonstrate a gradient-refractive-index (GRIN) collimating metalens made of our original reflectionless metasurface with an extremely high refractive index, above 10 at 0.312 THz. The planar collimating metalens converts wide-angle radiation from a resonant tunneling diode (RTD) to a collimated plane wave and enhances the directivity of a single RTD 4.2 times. We also demonstrate directional angle control of terahertz waves by moving the metalens in parallel with the incoming wave. The metalens can be simply integrated with a variety of terahertz continuous-wave (CW) sources for 6G (beyond 5G) wireless communications and imaging in future advanced applications. Flat optics based on high refractive index metasurfaces rather than naturally occurring materials can offer an accessible platform for optical devices with unprecedented functionalities.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.427135DOI Listing

Publication Analysis

Top Keywords

resonant tunneling
8
tunneling diode
8
terahertz waves
8
naturally occurring
8
occurring materials
8
flat optics
8
collimating metalens
8
high refractive
8
metalens
5
metalens mounted
4

Similar Publications

The water trimer, as the smallest water cluster in which the three-body interactions can manifest, is arguably the most important hydrogen-bonded trimer. Accurate, fully coupled quantum treatment of its excited intermolecular vibrations has long been an elusive goal. Here, we present the methodology that for the first time allows rigorous twelve-dimensional (12D) quantum calculation of the intermolecular vibration-tunneling eigenstates of the water trimer, with the monomers treated as rigid.

View Article and Find Full Text PDF

Tungsten bronze oxides have emerged as attractive materials for energy storage owing to their fast charge-discharge property. However, the internal weakness of low capacity and short cycling performance impedes their development in wide application. In this work, the tungsten bronze WNbO nanorods with preferred orientation (001) were prepared by hydrothermal method for the first time.

View Article and Find Full Text PDF

Lanthanide atoms show long magnetic lifetimes because of their strongly localized 4 electrons, but electrical control of their spins has been difficult because of their closed valence shell configurations. We achieved electron spin resonance of individual lanthanide atoms using a scanning tunneling microscope to probe the atoms bound to a protective insulating film. The atoms on this surface formed a singly charged cation state having an unpaired 6 electron, enabling tunnel current to access their 4 electrons.

View Article and Find Full Text PDF

Effect of defects on ballistic transport in a bilayer SnS-based junction with Co intercalated electrodes.

Phys Chem Chem Phys

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.

View Article and Find Full Text PDF

Introduction: A form of tenosynovial giant cell tumors (GCTs) that diffusely affects the soft tissue lining of joints and tendons is called pigmented villonodular synovitis or PVNS. About equal percentages of men and women are often affected, and it typically affects young individuals. The most typical sites of PVNS are the knee and ankle, making PVNS of the wrist a rare presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!