We fabricated the freestanding "core-shell" AgNWs/ Ni mesh electrodes by employing AgNWs solution onto the freestanding Ni-mesh. The combination of AgNWs and Ni mesh resulted in higher electrical conductivity, thereby enhancing the electromagnetic interference (EMI) shielding effectiveness (SE). The hybrid freestanding electrode created highly effective transparent and flexible EMI shielding films, featuring an ultrathin thickness (3 µm), the high optical transparency of 93% at 550 nm, and a SE of 41.5 dB in the X-band, which exceeds that of 30 dB for a freestanding Ni-mesh (94%). We showed that the hybrid freestanding AgNWs/Ni-mesh film is a promising high-performance transparent and flexible EMI shielding material that satisfies the requirements for optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.423369DOI Listing

Publication Analysis

Top Keywords

emi shielding
12
freestanding "core-shell"
8
mesh electrodes
8
electromagnetic interference
8
freestanding ni-mesh
8
hybrid freestanding
8
transparent flexible
8
flexible emi
8
freestanding
6
"core-shell" agnws/metallic
4

Similar Publications

Designing Carbon-Foam Composites via Molten-State Reduction for Multifunctional Electromagnetic Interference Shielding.

ACS Nano

January 2025

NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, Florida 32826, United States.

Advanced electromagnetic interference (EMI) shielding materials are in great demand because of the severe electromagnetic population problem caused by the explosive growth of advanced electronics. Besides superior EMI shielding properties, the mechanical strength of the shielding materials is also critical for some specific application scenarios (e.g.

View Article and Find Full Text PDF

Microgel-Guided MXene Assembly for High-Performance, Low-Solid Content Conductive Inks.

ACS Appl Mater Interfaces

January 2025

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.

Rapid evolution of smart devices necessitates high-performance, lightweight materials for effective electromagnetic interference (EMI) shielding. TiCT MXene nanosheets are promising for such applications, yet the high solid content typically required for 3D-printable MXene inks limits their scalability and cost efficiency. In this study, we present an MXene-based ink with an ultralow solid content (0.

View Article and Find Full Text PDF

Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications.

Int J Biol Macromol

December 2024

International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala India 686560. Electronic address:

Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics.

View Article and Find Full Text PDF

Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth.

Nanomicro Lett

December 2024

School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.

As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization.

View Article and Find Full Text PDF

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!