High efficiency and accuracy phase gratings are of crucial importance for large format heterodyne array receivers at terahertz frequencies. Here, by developing a design approach that can create gratings with arbitrary two-dimensional diffraction distributions, we have realized a reflective metallic phase grating that generates 2×2 diffraction beams at 0.85 THz. The measured total power efficiency of the diffraction beam pattern is 81.9%, which demonstrates at least 17% improvement in efficiency compared with the standard pseudo-2D Fourier phase grating. In addition, we report the realization of up to 10×10 diffraction beam two-dimensional phase grating designs at terahertz wavelengths, using an adaptation of the Gerchberg-Saxton (GS) scheme known as the Mixed-Region-Amplitude-Freedom algorithm. Rigorous full wave simulation proves the efficiency and accuracy of the design, which overcomes the inaccurate intensity of the beam distribution drawbacks originated from the standard GS algorithm. The results pave the way for the development of large-pixel terahertz multi-beam heterodyne receivers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.425838DOI Listing

Publication Analysis

Top Keywords

phase grating
12
two-dimensional phase
8
phase gratings
8
efficiency accuracy
8
diffraction beam
8
phase
6
development terahertz
4
terahertz two-dimensional
4
gratings multiple
4
beam
4

Similar Publications

Simulations of the Potential for Diffraction Enhanced Imaging at 8 keV using Polycapillary Optics.

Biomed Phys Eng Express

January 2025

Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.

Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.

View Article and Find Full Text PDF

3D Femtosecond Laser Beam Deflection for High-Precision Fabrication and Modulation of Individual Voxelated PCM Meta-Atoms.

Adv Sci (Weinh)

January 2025

Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Optical metasurfaces have found widespread applications in the field of optoelectronic devices. However, achieving dynamic and flexible control over metasurface functionalities, while also developing simplified fabrication methods for metasurfaces, continues to pose a significant challenge. Here, the study introduces a PCM-only metasurface that exclusively consists of voxel units crafted from different phases of phase-change materials.

View Article and Find Full Text PDF

Binocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).

View Article and Find Full Text PDF

The curing process of hair-pin motor stator insulation is critical, as residual stress increases the risk of partial discharge and shortens a motor's lifespan. However, studies on the stress-induced defects during insulation varnish curing remain limited. This research integrates three-dimensional numerical simulations and experimental analysis to develop a curing model based on unsaturated polyester imide resin, aiming to explore the mechanisms of residual stress formation and optimization strategies.

View Article and Find Full Text PDF

Self-supervised denoising of grating-based phase-contrast computed tomography.

Sci Rep

December 2024

Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

Article Synopsis
  • GbPC-CT is gaining popularity for its ability to enhance soft-tissue contrast in imaging, but it struggles with resolution issues, especially at low doses commonly used in clinical settings.
  • The study introduces a self-supervised deep learning model called Noise2Inverse, which helps enhance image quality while reducing the required radiation dose.
  • The results show that Noise2Inverse outperforms traditional denoising methods, indicating that deep learning can improve the resolution of gbPC-CT images, making it a more viable option for medical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!