The prevalence of end-stage kidney disease (ESKD) continuously increases worldwide. The increasing prevalence parallels the growth in the number of people with diabetes, which is the leading cause of ESKD. Early diagnosis of chronic kidney disease (CKD) in patients with diabetes and appropriate intervention is important to delay the progression of kidney function decline and prevent ESKD. Rate of CKD progression and response to treatment varies among patients with diabetes, highlighting the need to tailor individual treatment. In this review, we describe recent advances and areas for future studies with respect to precision medicine in diabetic kidney disease (DKD). DKD is a multi-factorial disease that is subject in part to genetic heritability, but is also influenced by various exogenous mediators, such as environmental or dietary factors. Genetic testing so far has limited utility to facilitate early diagnosis, classify progression or evaluate response to therapy. Various biomarker-based approaches are currently explored to identify patients at high risk of ESKD and to facilitate decision-making for targeted therapy. These studies have led to discovery and validation of a couple of inflammatory proteins such as circulating tumour necrosis factor receptors, which are strong predictors of kidney disease progression. Moreover, risk and drug-response scores based on multiple biomarkers are developed to predict kidney disease progression and long-term drug efficacy. These findings, if implemented in clinical practice, will pave the way to move from a one-size-fits-all to a one-fit-for-everyone approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216727 | PMC |
http://dx.doi.org/10.1093/ndt/gfab045 | DOI Listing |
J Am Soc Nephrol
January 2025
Barbara T Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
JCI Insight
January 2025
Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.
Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.
Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).
J Nephrol
January 2025
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy.
Background: In an Italian cohort of lupus podocytopathy patients, we aimed to characterize the presenting features, therapy, and outcomes, and explore differences between relapsing and non-relapsing patients.
Methods: We identified 29 patients with lupus podocytopathy from 1994 to 2023 in 11 Italian Nephrology/Rheumatology Units, and divided them into two groups: relapsing and non-relapsing. Given the limited sample size, a p-value ≤ 0.
J Nephrol
January 2025
Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is caused primarily by pathogenic variants in the PKD1 and PKD2 genes. Although the type of ADPKD variant can influence disease severity, rare, hypomorphic PKD1 variants have also been reported to modify disease severity or cause biallelic ADPKD. This study examines whether rare, additional, potentially protein-altering, non-pathogenic PKD1 variants contribute to ADPKD phenotypic outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!