Genome- and community-level interaction insights into the ecological role of archaea in rare earth element mine drainage in South China.

Water Res

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: August 2021

Microbial communities play crucial roles in mine drainage generation and remediation. Despite the wide distribution of archaea in the mine ecosystem, their diversity and ecological roles remain less understood than bacteria. Here, we retrieved 56 archaeal metagenome-assembled genomes from a river impacted by rare earth element (REE) mining activities in South China. Genomic analysis showed that archaea represented four distinct lineages, including phyla of Thaumarchaeota, Micrarchaeota, Nanoarchaeota and Thermoplasmata. These archaea represented a considerable fraction (up to 40%) of the total prokaryote community, which might contribute to nitrogen and sulfur cycling in the REE mine drainage. Reconstructed metabolic potential among diverse archaea taxa revealed that archaea were involved in the network of ammonia oxidation, denitrification, sulfate redox reaction, and required substrates supplied by other community members. As the dominant driver of ammonia oxidation, Thaumarchaeota might provide substrates to support the survival of two nano-sized archaea belonging to Micrarchaeota and Nanoarchaeota. Despite the absence of biosynthesis pathways for amino acids and nucleotides, the potential capacity for nitrite reduction (nirD) was observed in Micrarchaeota, indicating that these nano-sized archaea encompassed diverse metabolisms. Moreover, Thermoplasmata, as keystone taxa in community, might be the main genetic donor for the other three archaeal phyla, transferring many environmental resistance related genes (e.g., V/A-type ATPase and Vitamin B12-transporting ATPase). The genetic interactions within archaeal community through horizontal gene transfer might be the key to the formation of archaeal resistance and functional partitioning. This study provides putative metabolic and genetic insights into the diverse archaea taxa from community-level perspectives, and highlights the ecological roles of archaea in REE contaminated aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.117331DOI Listing

Publication Analysis

Top Keywords

mine drainage
12
archaea
10
rare earth
8
earth element
8
south china
8
ecological roles
8
archaea represented
8
micrarchaeota nanoarchaeota
8
diverse archaea
8
archaea taxa
8

Similar Publications

Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions.

View Article and Find Full Text PDF

Study on numerical simulation of groundwater flow field and slope stability in multi-aquifer open pit mine.

Sci Rep

December 2024

Liaoning Institute of Technology and Equipment for Mineral Resources Development and Utilisation in Higher Educational Institutions, Liaoning Technical University, Fuxin, 123000, Liaoning, China.

Water is one of the most important influences on slope stability in open pit mines. In order to solve the problem of slope stability analysis in multi-aquifer open pit mines, the open pit mine in Block I of Thar Coalfield in Pakistan with multiple aquifers was taken as the research background. The groundwater flow field at different excavation phases was analyzed by numerical simulation method.

View Article and Find Full Text PDF

The extraction of mineral deposits is often associated with the occurrence of acid mine drainage (AMD), which can persist even after mine closure due to remaining sulfide minerals. This study investigates a 200-year-old abandoned mine and its impacts on nearby water resources. The study area is well known for Kuroko ore deposits located upstream of spring and river water resources.

View Article and Find Full Text PDF

Impacts of acid mine drainage remediation in the largest gold mine of Latin America on natural water bodies in the Dominican Republic.

Environ Sci Pollut Res Int

December 2024

Universidad Autónoma de Santo Domingo, Facultad de Ciencias, Zona Universitaria, Distrito Nacional, Santo Domingo, Dominican Republic.

Impacts of the acid mine drainage (AMD) remediation are investigated on the largest gold mine in Latin America, located in the Dominican Republic. Geochemical analysis of suspended matter in water performed in 2022 on water bodies located downstream to the mine, namely, the Margajita River and Lake Hatillo, are compared with analyses made in 2007, before the AMD remediation. The results for the Margajita River show a strong decrease in heavy metal and metalloid concentrations in the dissolved phase for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb (between 89.

View Article and Find Full Text PDF

Introduction: It is hypothesized that systemically administered antibiotics penetrate wound sites more effectively during negative pressure wound therapy (NPWT). However, there is a lack of clinical data from patients who receive NPWT for deep sternal wound infection (DSWI) after open-heart surgery. Here, we evaluated vancomycin penetration into exudate in this patient group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!