Rhizosphere dissolved organic matter and iron plaque modified by organic amendments and its relations to cadmium bioavailability and accumulation in rice.

Sci Total Environ

College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400715, China; State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Southwest University, Chongqing 400715, China. Electronic address:

Published: October 2021

AI Article Synopsis

Article Abstract

Organic amendments can modify rhizosphere dissolved organic matter (DOM) properties and Fe-plaque quantity, thereby affecting cadmium (Cd) bioavailability and uptake by rice. Pot experiments were conducted to investigate effects of biochar (BC) and vermicompost (VC) at different rates (0, 1%, and 5%) on rhizosphere DOM characteristics and Fe-plaque quantity, and their impacts on Cd bioavailability and accumulation in high and low Cd-accumulation rice cultivars (HAC and LAC). Soil DOM was characterized by ultraviolet-visible (UV-Vis) and fluorescence excitation-emission matrix (EEM) spectrum analyses. Hydroponic experiments were conducted to investigate effects of BC- or VC-derived DOM combined Fe-plaque on Cd uptake by rice. Results showed that increasing rates of organic amendments increased DOM concentration while decreased Cd availability in rhizosphere and bulk soils and Cd contents in rice tissues. The Cd reduction in LAC grains (31.9%-72.7%) was better than that in HAC grains (6.3%-25.4%) after organic amendment addition. Soil DOM properties were modified by organic amendments towards higher aromaticity, molecular weight, and stability. VC resulted in a greater increase of humic-like fractions but reduced protein-like proportions in rhizosphere DOM over BC. Negative correlations were observed between humic-like fractions and available Cd in the rhizosphere. Likewise, VC (especially 5%VC) promoted the formation of Fe-plaque and limited Cd soil-to-root transport, while BC groups showed a reverse trend. The results of hydroponic experiments confirmed BC- and VC-derived DOM and Fe-plaque further inhibited Cd uptake by rice via the complexation with Cd and the sequestration of Cd, respectively. Hence, VC application combined with low Cd-accumulation rice could be an effective strategy for the safe utilization of Cd-contamination soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148216DOI Listing

Publication Analysis

Top Keywords

organic amendments
16
uptake rice
12
rhizosphere dissolved
8
dissolved organic
8
organic matter
8
modified organic
8
cadmium bioavailability
8
bioavailability accumulation
8
dom
8
dom properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!