Objective: to evaluate the accuracy of an antibody point-of-care lateral flow immunoassay (LFI - Wondfo Biotech Co., Guangzhou, China) in a pediatric population.
Methods: children and adolescents (2 months to 18 years) with signs and symptoms suggestive of acute SARS-CoV-2 infection were prospectively investigated with nasopharyngeal RT-PCR and LFI at the emergency room. RT-PCR was performed at baseline, and LFI at the same time or scheduled for those with less than 7 days of the clinical picture. Overall accuracy, sensitivity and specificity were assessed, as well as according to the onset of symptoms (7-13 or ≥14 days) at the time of the LFI test.
Results: In 175 children included, RT-PCR and LFI were positive in 51 (29.14%) and 36 (20.57%), respectively. The overall sensitivity, specificity, positive and negative predictive value was 70.6% (95%CI 56.2-82.5), 96.8% (95%CI 91.9-99.1), 90.0% (95%CI 77.2-96.0), and 88.9% (95%CI 83.9-92.5), respectively. At 7-13 and ≥14 days after the onset of symptoms, sensitivity was 60.0% (95%CI 26.2-87.8) and 73.2% (95%CI 57.1-85.8) and specificity was 97.9% (95%CI 88.7-99.9) and 96.1% (95%CI 89.0-99.2), respectively.
Conclusion: Despite its high specificity, in the present study the sensitivity of LFI in children was lower (around 70%) than most reports in adults. Although a positive result is informative, a negative LFI test cannot rule out COVID-19 in children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173459 | PMC |
http://dx.doi.org/10.1016/j.jped.2021.04.010 | DOI Listing |
Biosens Bioelectron
December 2024
Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy. Electronic address:
Lateral flow assays (LFA) are widely adopted in point-of-care diagnostics across a spectrum of applications, due to their simplicity of use and cost-effectiveness. However, in complex biological matrices (e.g.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Engineering, Ulster University, Belfast BT15 1ED, UK.
Lateral flow assays are widely used in point-of-care diagnostics but face challenges in sensitivity and accuracy when detecting low analyte concentrations, such as thyroid-stimulating hormone biomarkers. This study aims to enhance assay performance by leveraging textural features and hybrid artificial intelligence models. A modified Gray-Level Co-occurrence Matrix, termed the Averaged Horizontal Multiple Offsets Gray-Level Co-occurrence Matrix, was utilised to compute the textural features of the biosensor assay images.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France.
Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia.
A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada. Electronic address:
Rapid, point-of-care tests are critical for early diagnosis of disease and detection of biological threats. Lateral flow immunoassays (LFIAs) are well-suited for point-of-care testing due to their ease of use and straightforward readout. However, limitations in sensitivity, quantification, and integration into sample-to-result systems indicate the need for further advancements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!