Background: To identify and rank the importance of key determinants of end-of-life (EOL) health care costs, and to understand how the key factors impact different percentiles of the distribution of health care costs.
Method: We applied a principled, machine learning-based variable selection algorithm, using Quantile Regression Forests, to identify key determinants for predicting the 10th (low), 50th (median), and 90th (high) quantiles of EOL health care costs, including costs paid for by Medicare, Medicaid, Medicare Health Maintenance Organizations (HMOs), private HMOs, and patient's out-of-pocket expenditures.
Results: Our sample included 7 539 Medicare beneficiaries who died between 2002 and 2017. The 10th, 50th, and 90th quantiles of EOL health care cost are $5 244, $35 466, and $87 241, respectively. Regional characteristics, specifically, the EOL-Expenditure Index, a measure for regional variation in Medicare spending driven by physician practice, and the number of total specialists in the hospital referral region were the top 2 influential determinants for predicting the 50th and 90th quantiles of EOL costs but were not determinants of the 10th quantile. Black race and Hispanic ethnicity were associated with lower EOL health care costs among decedents with lower total EOL health care costs but were associated with higher costs among decedents with the highest total EOL health care costs.
Conclusions: Factors associated with EOL health care costs varied across different percentiles of the cost distribution. Regional characteristics and decedent race/ethnicity exemplified factors that did not impact EOL costs uniformly across its distribution, suggesting the need to use a "higher-resolution" analysis for examining the association between risk factors and health care costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9071433 | PMC |
http://dx.doi.org/10.1093/gerona/glab176 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
Am J Emerg Med
January 2025
Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain; Emergency Department, Hospital Clínico Universitario, Gerencia Regional de Salud de Castilla y León, Valladolid, Spain.
Background: The study of the inclusion of new variables in already existing early warning scores is a growing field. The aim of this work was to determine how capnometry measurements, in the form of end-tidal CO2 (ETCO2) and the perfusion index (PI), could improve the National Early Warning Score (NEWS2).
Methods: A secondary, prospective, multicenter, cohort study was undertaken in adult patients with unselected acute diseases who needed continuous monitoring in the emergency department (ED), involving two tertiary hospitals in Spain from October 1, 2022, to June 30, 2023.
J Nurs Adm
December 2024
Authors Affiliations: PhD Candidate (Hung) and Professor (Dr Jeng), School of Nursing, Taipei Medical University; Head Nurse (Hung) and Director (Dr Ming), Department of Nursing, Taipei Veterans General Hospital; Adjunct Assistant Professor (Dr Ming), School of Nursing, College of Nursing, National Yang Ming Chiao Tung University, Taipei City; and Professor (Dr Tsao), Nursing Department and Graduate School, National Taipei University of Nursing and Health Sciences, Taiwan.
Objective: The aim of this study was to explore the lived experiences of presenteeism among Taiwanese nursing staffs.
Background: Presenteeism is a subjective and multifaceted experience, but nurses have rarely been invited to provide their own views of presenteeism.
Methods: A qualitative study based on content analysis was conducted.
J Nurs Adm
December 2024
Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.
Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.
Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.
Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.
J Nurs Adm
December 2024
Author Affiliations: Assistant Professor (Dr Prothero) and Nurse (Sorhus and Huefner), College of Nursing, Brigham Young University, Provo, Utah.
Objective: This study explored nurse leaders' perspectives and experiences in supporting nurses following a serious medical error.
Background: Appropriate support is crucial for nurses following an error. Authentic leadership provides an environment of psychological safety and establishes a patient safety culture.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!