With the high sensitivity and anti-interference provided by a dual Z-scheme structure photoanode and a two-electrode system, a high-performance self-powered photoelectrochemical (PEC) aptasensor for oxytetracycline (OTC) detection was established in this work. Graphitic carbon nitride (g-CN) with excellent photoelectric properties was used to be combined with WO and MnO to form a kind of dual Z-scheme heterojunction. The designed unique structure and the complementary performances of the three materials collectively guaranteed the highly stable photocurrent output of the photoanode due to the wide range of light absorption and the high separation rate of electron-hole pairs. The aptamer-based cathode modified with reduced graphene oxide (rGO) and Au nanoparticles (Au NPs) provided high conductivity and aptamer-binding sites, which brought excellent selective recognition of OTC as well as the self-powered capacity by receiving electrons from the photoanode. In the PEC sensing of OTC, the device presented a wide detection range from 1 pM to 150 nM and a low detection limit of 0.1 pM. Besides, the developed PEC aptasenor showed good selectivity, reproducibility, and stability, so as to be applied to real samples. The proposed PEC sensing method can be considered an effective and promising direction for the detection of antibiotics in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c00929DOI Listing

Publication Analysis

Top Keywords

dual z-scheme
12
self-powered photoelectrochemical
8
aptasensor oxytetracycline
8
pec sensing
8
detection
5
photoelectrochemical aptasensor
4
oxytetracycline cathodic
4
cathodic detection
4
detection based
4
based dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!