Cotton has many leaves and even more bolls, which results in a complicated source-sink relationship. Under water stress, the single boll weight (SBW) of cotton remains relatively stable, while both the leaf area and leaf photosynthetic rate decrease greatly. It is therefore difficult to understand how the formation of SBW is regulated under water stress solely by considering single-leaf photosynthesis. Considering the cotton boll-leaf system (BLS: including the main-stem leaf, sympodial leaves, and non-leaf organs) as the basic unit of the cotton canopy, we speculated that the formation of SBW may depend on photosynthesis in the corresponding BLS under water stress. To verify this hypothesis, five water treatments were set up in the field. The results showed that with increasing water stress, the relative water content (RWC) of the main-stem and sympodial leaves decreased gradually, and the decrease in the sympodial leaves was more obvious. The SBW and the number of BLSs decreased slightly with increasing water stress, while the number of bolls per plant decreased significantly. The area of the BLS decreased gradually with increasing water stress, and the area of sympodial leaves decreased more than that of the main-stem leaves. Gas exchange showed that the photosynthetic rate of the BLS (Pn) decreased gradually with increasing water stress. In addition, the single-leaf photosynthesis and carboxylation efficiency (CE) decreased progressively and rapidly with the increase of water stress. Compared with the main-stem leaf, the photosynthetic function of the sympodial leaf decreased more. Further analysis showed that compared with leaf photosynthetic rate, there was a better correlation between Pn and SBW. Thus, the formation of SBW mainly depends on Pn under water stress, and the increase of BLS to boll is also helpful to maintain SBW to some extent. In BLS, the photosynthesis of the main-stem leaf plays a very important role in maintaining the stability of SBW, while the photosynthetic performance in sympodial leaves may be regulated plastically to influence SBW.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-021-00837-z | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Biology, Hamilton College, Clinton, NY, USA.
Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.
View Article and Find Full Text PDFMicrob Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFPlanta
January 2025
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.
View Article and Find Full Text PDFSci Rep
January 2025
College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!