AI Article Synopsis

  • Biosensors play a crucial role in healthcare, particularly in monitoring biological processes at the molecular level, where nanomaterials and nanosensors are most effective.
  • Low-dimensional materials are beneficial for biosensing due to their large surface area and unique properties, making them ideal for targeted glucose monitoring in diabetes management.
  • The review covers recent advancements in glucose sensing, discusses different sensing methods, explores the effects of material characteristics on performance, and identifies future challenges and opportunities in this field.

Article Abstract

Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr02529eDOI Listing

Publication Analysis

Top Keywords

low dimensional
16
dimensional materials
16
glucose sensing
16
low-dimensional materials
8
glucose
7
sensing
7
materials
6
low
4
materials glucose
4
sensing biosensors
4

Similar Publications

Spin-polarized edge states in two-dimensional materials hold promise for spintronics and quantum computing applications. Constructing stable edge states by tailoring two-dimensional semiconductor materials with bulk-boundary correspondence is a feasible approach. Recently layered NiI is suggested as a two-dimensional type-II multiferroic semiconductor with intrinsic spiral spin ordering and chirality-induced electric polarization.

View Article and Find Full Text PDF

Decoding states of consciousness from brain activity is a central challenge in neuroscience. Dynamic functional connectivity (dFC) allows the study of short-term temporal changes in functional connectivity (FC) between distributed brain areas. By clustering dFC matrices from resting-state fMRI, we previously described "brain patterns" that underlie different functional configurations of the brain at rest.

View Article and Find Full Text PDF

Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation.

Nat Commun

December 2024

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.

View Article and Find Full Text PDF

Crystal symmetry, which governs the local atomic coordination and bonding environment, is one of the paramount constituents that intrinsically dictate materials' functionalities. However, engineering crystal symmetry is not straightforward due to the isotropically strong covalent/ionic bonds in crystals. Layered two-dimensional materials offer an ideal platform for crystal engineering because of the ease of interlayer symmetry operations.

View Article and Find Full Text PDF

Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!