Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fragment-based screening (FBS) is a well-validated and accepted concept within the drug discovery process both in academia and industry. The greatest advantage of NMR-based fragment screening is its ability not only to detect binders over 7-8 orders of magnitude of affinity but also to monitor purity and chemical quality of the fragments and thus to produce high quality hits and minimal false positives or false negatives. A prerequisite within the FBS is to perform initial and periodic quality control of the fragment library, determining solubility and chemical integrity of the fragments in relevant buffers, and establishing multiple libraries to cover diverse scaffolds to accommodate various macromolecule target classes (proteins/RNA/DNA). Further, an extensive NMR-based screening protocol optimization with respect to sample quantities, speed of acquisition and analysis at the level of biological construct/fragment-space, in condition-space (buffer, additives, ions, pH, and temperature) and in ligand-space (ligand analogues, ligand concentration) is required. At least in academia, these screening efforts have so far been undertaken manually in a very limited fashion, leading to limited availability of screening infrastructure not only in the drug development process but also in the context of chemical probe development. In order to meet the requirements economically, advanced workflows are presented. They take advantage of the latest state-of-the-art advanced hardware, with which the liquid sample collection can be filled in a temperature-controlled fashion into the NMR-tubes in an automated manner. H/F NMR ligand-based spectra are then collected at a given temperature. High-throughput sample changer (HT sample changer) can handle more than 500 samples in temperature-controlled blocks. This together with advanced software tools speeds up data acquisition and analysis. Further, application of screening routines on protein and RNA samples are described to make aware of the established protocols for a broad user base in biomacromolecular research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!