Amplitude Mode in Quantum Magnets via Dimensional Crossover.

Phys Rev Lett

Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Published: June 2021

We investigate the amplitude (Higgs) mode associated with longitudinal fluctuations of the order parameter at the continuous spontaneous symmetry breaking phase transition. In quantum magnets, due to the fast decay of the amplitude mode into low-energy Goldstone excitations, direct observation of this mode represents a challenging task. By focusing on a quasi-one-dimensional geometry, we circumvent the difficulty and investigate the amplitude mode in a system of weakly coupled spin chains with the help of quantum Monte Carlo simulations, stochastic analytic continuation, and a chain-mean field approach combined with a mapping to the field-theoretic sine-Gordon model. The amplitude mode is observed to emerge in the longitudinal spin susceptibility in the presence of a weak symmetry-breaking staggered field. A conventional measure of the amplitude mode in higher dimensions, the singlet bond mode, is found to appear at a lower than the amplitude mode frequency. We identify these two excitations with the second (first) breather of the sine-Gordon theory, correspondingly. In contrast to higher-dimensional systems, the amplitude and bond order fluctuations are found to carry significant spectral weight in the quasi-1D limit.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.227201DOI Listing

Publication Analysis

Top Keywords

amplitude mode
24
amplitude
8
quantum magnets
8
investigate amplitude
8
mode
8
mode quantum
4
magnets dimensional
4
dimensional crossover
4
crossover investigate
4
amplitude higgs
4

Similar Publications

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Analysis of Acoustic Surface Wave Focused Unidirectional Interdigital Transducers Using Coupling-of-Mode Theory.

Micromachines (Basel)

December 2024

School of Physics and Electronic Information, Yunnan Normal University, No. 1 Yuhua Area, Chenggong District, Kunming 650500, China.

In cell or droplet separation, high acoustic wave energy of a surface acoustic wave (SAW) device is required to generate sufficient acoustic radiation force. In this paper, the electrode width-control floating electrode focused unidirectional interdigital transducer (EWC-FEFUDT) is proposed due to its enhanced focusing properties. The performance of the EWC-FEFUDT is investigated using the Coupling-of-Mode (COM) theory, and the COM parameter is extracted using the Finite Element Method (FEM).

View Article and Find Full Text PDF

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!