Pentraxin 3 secreted by human adipose-derived stem cells promotes dopaminergic neuron repair in Parkinson's disease via the inhibition of apoptosis.

FASEB J

Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Published: July 2021

Although adipose-derived human mesenchymal stem cell (hADSC) transplantation has recently emerged as a promising therapeutic modality for Parkinson's disease (PD), its underlying mechanism of action has not been fully elucidated. This study evaluated the therapeutic effects of stereotaxic injection of hADSCs in the striatum of the 6-OHDA-induced mouse model. Furthermore, an in vitro PD model was constructed using tissue-organized brain slices. The therapeutic effect was also evaluated using a co-culture of the hADSCs and 6-OHDA-treated brain slice. The analysis of hADSC exocrine proteins using RNA-sequencing, human protein cytokine arrays, and label-free quantitative proteomics identified key extracellular factors in the hADSC secretion environment. The degeneration and apoptosis of the dopaminergic neurons were measured in the PD samples in vivo and in vitro, and the beneficial effects were evaluated using quantitative reverse transcription-polymerase chain reaction, western blotting, Fluoro-Jade C, TUNEL assay, and immunofluorescence analysis. This study found that hADSCs protected the dopaminergic neurons in the in vivo and vitro models. We identified Pentraxin 3 (PTX3) as a key extracellular factor in the hADSC secretion environment. Moreover, we found that human recombinant PTX3 (rhPTX3) treatment could rescue the pathophysiological behavior of the PD mice in vivo, prevent dopaminergic neuronal death, and increase neuronal terminals in the ventral tegmental area + substantia nigra pars compacta and striatum in the PD brain slices in vitro. Furthermore, testing of the pro-apoptotic markers in the PD mouse brain following rhPTX3 treatment revealed that rhPTX3 can prevent apoptosis and degeneration of the dopaminergic neurons. This study discovered that PTX3, a hADSC-secreted protein, potentially protected the dopaminergic neurons against apoptosis and degeneration during PD progression and improved motor performance in PD mice, indicating the possible mechanism of action of hADSC replacement therapy for PD. Thus, our study discovered potential translational implications for the development of PTX3-based therapeutics for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202100408RRDOI Listing

Publication Analysis

Top Keywords

dopaminergic neurons
16
parkinson's disease
8
mechanism action
8
brain slices
8
key extracellular
8
hadsc secretion
8
secretion environment
8
vivo vitro
8
protected dopaminergic
8
rhptx3 treatment
8

Similar Publications

This study aimed to evaluate different combinations of three dietary supplements for potential additive or synergistic effects in an Parkinson's Disease model. The complex and diverse processes leading to neurodegeneration in each patient with a neurodegenerative disorder cannot be effectively addressed by a single medication. Instead, various combinations of potentially neuroprotective agents targeting different disease mechanisms simultaneously may show improved additive or synergistic efficacy in slowing the disease progression and allowing the agents to be utilized at lower doses to minimize side effects.

View Article and Find Full Text PDF

Adaptive behavior depends on the ability to predict specific events, particularly those related to rewards. Armed with such associative information, we can infer the current value of predicted rewards based on changing circumstances and desires. To support this ability, neural systems must represent both the value and identity of predicted rewards, and these representations must be updated when they change.

View Article and Find Full Text PDF

In Parkinson's disease, dopaminergic neurons (DANs) in the midbrain gradually degenerate, with ventral substantia nigra pars compacta (SNc) DANs exhibiting greater vulnerability. However, it remains unclear whether specific molecular subtypes of ventral SNc DANs are more susceptible to degeneration in PD, and if they contribute to the early motor symptoms associated with the disease. We identified a subtype of Sox6+ DANs, Anxa1+, which are selectively lost earlier than other DANs, and with a time course that aligns with the development of motor symptoms in MitoPark mice.

View Article and Find Full Text PDF

The degeneration of midbrain dopamine (DA) neurons disrupts the neural control of natural behavior, such as walking, posture, and gait in Parkinson's disease. While some aspects of motor symptoms can be managed by dopamine replacement therapies, others respond poorly. Recent advancements in machine learning-based technologies offer opportunities for unbiased segmentation and quantification of natural behavior in both healthy and diseased states.

View Article and Find Full Text PDF

Astragaloside Ⅳ (AS-Ⅳ) improved the motor behavior of PD mouse but the alteration of imaging in the PD mice brain was unclear. PD models were established by unilateral injection of ROT into the substantia nigra pars compacta (SNc) of mice. AS-Ⅳ (4 mg/kg) was intraperitoneally injected once a day for 14 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!