Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The excellent mechanical strength and toughness of spider silk are well characterized experimentally and understood atomistically using computational simulations. However, little attention has been focused on understanding whether the amino acid sequence of β-sheet nanocrystals, which is the key to rendering strength to silk fiber, is optimally chosen to mitigate molecular-scale failure mechanisms. To investigate this, we modeled β-sheet nanocrystals of various representative small/polar/hydrophobic amino acid repeats for determining the sequence motif having superior nanomechanical tensile strength and toughness. The constant velocity pulling of the central β-strand in the nanocrystal, using steered molecular dynamics, showed that homopolymers of small amino acid (alanine/alanine-glycine) sequence motifs, occurring in natural silk fibroin, have better nanomechanical properties than other modeled structures. Further, we analyzed the hydrogen bond (HB) and β-strand pull dynamics of modeled nanocrystals to understand the variation in their rupture mechanisms and explore sequence-dependent mitigating factors contributing to their superior mechanical properties. Surprisingly, the enhanced side-chain interactions in homopoly-polar/hydrophobic amino acid models are unable to augment backbone HB cooperativity to increase mechanical strength. Our analyses suggest that nanocrystals of pristine silk sequences most likely achieve superior mechanical strength by optimizing side-chain interaction, packing, and main-chain HB interactions. Thus, this study suggests that the nanocrystal β-sheet sequence plays a crucial role in determining the nanomechanical properties of silk, and the evolutionary process has optimized it in natural silk. This study provides insight into the molecular design principle of silk with implications in the genetically modified artificial synthesis of silk-like biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c00447 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!