A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinguishing Adsorbed and Deposited Ionomers in the Catalyst Layer of Polymer Electrolyte Fuel Cells Using Contrast-Variation Small-Angle Neutron Scattering. | LitMetric

The ionomers distributed on carbon particles in the catalyst layer of polymer electrolyte fuel cells (PEFCs) govern electrical power via proton transport and oxygen permeation to active platinum. Thus, ionomer distribution is a key to PEFC performance. This distribution is characterized by ionomer adsorption and deposition onto carbon during the catalyst-ink coating process; however, the adsorbed and deposited ionomers cannot easily be distinguished in the catalyst layer. Therefore, we identified these two types of ionomers based on the positional correlation between the ionomer and carbon particles. The cross-correlation function for the catalyst layer was obtained by small-angle neutron scattering measurements with varying contrast. From fitting with a model for a fractal aggregate of polydisperse core-shell spheres, we determined the adsorbed-ionomer thickness on the carbon particle to be 51 Å and the deposited-ionomer amount for the total ionomer to be 50%. Our technique for ionomer differentiation can be used to optimally design PEFC catalyst layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210452PMC
http://dx.doi.org/10.1021/acsomega.1c01535DOI Listing

Publication Analysis

Top Keywords

catalyst layer
16
adsorbed deposited
8
deposited ionomers
8
layer polymer
8
polymer electrolyte
8
electrolyte fuel
8
fuel cells
8
small-angle neutron
8
neutron scattering
8
carbon particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!