Melatonin Attenuates Chromium (VI)-Induced Spermatogonial Stem Cell/Progenitor Mitophagy by Restoration of METTL3-Mediated RNA N-Methyladenosine Modification.

Front Cell Dev Biol

Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.

Published: June 2021

Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, and any damage to SSCs may result in spermatogenic disorder and male infertility. Chromium (Cr) (VI) is a proven toxin, mutagen, and carcinogen, perpetually detrimental to environmental organisms due to its intricate and enduring detoxification process . Despite this, the deleterious effects of Cr (VI) on SSCs and the underlying mechanisms remain poorly understood. In this study, we identified that Cr (VI) impaired male reproductive system in mouse testes and induced mitochondrial dynamic imbalance and mitophagy in SSCs/progenitors. Cr (VI) also downregulated the RNA N-methyladenosine (mA) modification levels in mitochondrial dynamic balance and mitophagy genes in SSCs/progenitors. Inspiringly, the toxic effects of Cr (VI) could be relieved by melatonin pretreatment. Melatonin alleviated Cr (VI)-induced damage to male reproductive system and autophagy in mouse testes. Melatonin also attenuated Cr (VI)-induced cell viability loss and reactive oxygen species (ROS) generation, as well as mitochondrial dynamic disorders and mitophagy in SSCs/progenitors. The protective roles of melatonin against Cr (VI)-induced mitophagy were exerted by restoration of METTL3-mediated RNA mA modification and activation of mitochondrial fusion proteins MFN2 and OPA1, as well as inhibition of the mitophagy BNIP3/NIX receptor pathway. Thus, our study provides novel insights into the molecular mechanisms for RNA mA modification underlying the gene regulatory network responsible for mitochondrial dynamic balance, and also lays new experimental groundwork for treatment of Cr (VI)-induced damage to male fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8212693PMC
http://dx.doi.org/10.3389/fcell.2021.684398DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamic
16
spermatogonial stem
8
restoration mettl3-mediated
8
mettl3-mediated rna
8
rna n-methyladenosine
8
n-methyladenosine modification
8
male reproductive
8
reproductive system
8
mouse testes
8
mitophagy sscs/progenitors
8

Similar Publications

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy.

View Article and Find Full Text PDF

Mitochondria are key regulators of metabolism and ATP supply in skeletal muscle, while circadian rhythms influence many physiological processes. However, whether mitochondrial function is intrinsically regulated in a circadian manner in mouse skeletal muscle is inadequately understood. Accordingly, we measured post-absorptive transcript abundance of markers of mitochondrial biogenesis, dynamics, and metabolism (extensor digitorum longus [EDL], soleus, gastrocnemius), protein abundance of electron transport chain complexes (EDL and soleus), enzymatic activity of SDH (tibialis anterior and plantaris), and maximum uncoupled respiration (tibialis anterior) in different skeletal muscles from female C57BL/6NJ mice at four zeitgeber times (ZT), ZT 1, 7, 13, and 19.

View Article and Find Full Text PDF

Background: Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript.

Method: ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion.

View Article and Find Full Text PDF

Effects of in vitro cytochalasin D and hypoxia on mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity in air-breathing fish heart.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:

The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!