The World Health Organization (WHO) has identified type 2 diabetes (T2DM) as a neglected, important, and re-emerging risk factor for tuberculosis (TB), especially in low and middle-income countries where TB is endemic. In this clinical trial study, oral liposomal glutathione supplementation (L-GSH) or placebo was given to individuals with T2DM to investigate the therapeutic effects of L-GSH supplementation. We report that L-GSH supplementation for 3 months in people with T2DM was able to reduce the levels of oxidative stress in all blood components and prevent depletion of glutathione (GSH) in this population known to be GSH deficient. Additionally, L-GSH supplementation significantly reduced the burden of intracellular mycobacteria within granulomas generated from peripheral blood mononuclear cells (PBMCs) of T2DM subjects. L-GSH supplementation also increased the levels of Th1-associated cytokines, IFN-γ, TNF-α, and IL-2 and decreased levels of IL-6 and IL-10. In conclusion our studies indicate that oral L-GSH supplementation in individuals with T2DM for three months was able to maintain the levels of GSH, reduce oxidative stress, and diminish mycobacterial burden within generated granulomas of diabetics. L-GSH supplementation for 3 months in diabetics was also able to modulate the levels of various cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8211104PMC
http://dx.doi.org/10.3389/fcimb.2021.657775DOI Listing

Publication Analysis

Top Keywords

l-gsh supplementation
24
oral liposomal
8
liposomal glutathione
8
type diabetes
8
individuals t2dm
8
supplementation months
8
oxidative stress
8
supplementation
7
l-gsh
7
t2dm
5

Similar Publications

Article Synopsis
  • * Research shows that liposomal glutathione (L-GSH) can help reduce oxidative stress and improve immune responses in TB-infected mice, but the effects of combining L-GSH with standard TB treatment (RIF) in diabetic mice have not been studied before.
  • * The study found that L-GSH combined with RIF effectively reduces liver inflammation, alters cytokine levels, and decreases the size of inflammation-related tissue damage in diabetic TB-infected mice, suggesting this combination therapy could be a promising approach for treating active TB in similar patient populations.
View Article and Find Full Text PDF

Thrombotic microangiopathy has been identified as a dominant mechanism for increased mortality and morbidity in coronavirus disease 2019 (COVID-19). In the context of severe COVID-19, patients may develop immunothrombosis within the microvasculature of the lungs, which contributes to the development of acute respiratory distress syndrome (ARDS), a leading cause of death in the disease. Immunothrombosis is thought to be mediated in part by increased levels of cytokines, fibrin clot formation, and oxidative stress.

View Article and Find Full Text PDF

Background: Extrapulmonary tuberculosis (EPTB) accounts for a fifth of all () infections worldwide. The rise of multidrug resistance in alongside the hepatotoxicity associated with antibiotics presents challenges in managing and treating tuberculosis (TB), thereby prompting a need for new therapeutic approaches. Administration of liposomal glutathione (L-GSH) has previously been shown to lower oxidative stress, enhance a granulomatous response, and reduce the burden of in the lungs of -infected mice.

View Article and Find Full Text PDF

Both active tuberculosis (TB) and asymptomatic latent () infection (LTBI) cause significant health burdens to humans worldwide. Individuals with immunocompromising health conditions, such as Type 2 Diabetes Mellitus (T2DM), have a weakened ability to control infection and are more susceptible to reactivation of LTBI to active diseases. T2DM cases are known to have glutathione (GSH) deficiency and impaired immune cell function, including the granulomatous response to infection.

View Article and Find Full Text PDF

(), the causative agent of tuberculosis (TB), is responsible for causing significant morbidity and mortality, especially among individuals with compromised immune systems. We have previously shown that the supplementation of liposomal glutathione (L-GSH) reduces viability and enhances a Th-1 cytokine response, promoting granuloma formation in human peripheral blood mononuclear cells in vitro. However, the effects of L-GSH supplementation in modulating the immune responses in the lungs during an active infection have yet to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!