A new approach to enhance the conventional two-phase anaerobic co-digestion of food waste and sewage sludge.

J Environ Health Sci Eng

Faculty of Civil Engineering, Division of Environmental Engineering, Babol Noshirvani University of Technology, Babol, Iran.

Published: June 2021

Background: Two-phase anaerobic co-digestion (TAcoD) is a versatile technology for the simultaneous treatment of organic materials and biogas production. However, the produced digestate and supernatant of the system contain heavy metals and organic substances that need to be treated prior to discharge or land application. Therefore, in this study, an innovative TAcoD for organic fertilizer and high supernatant quality achievement was proposed.

Methods: In the conventional TAcoD, mixed sewage sludge (SS) and food waste (FW) were first hydrolyzed in the acidogenic reactor, and then the hydrolyzate substrate was subjected to the methanogenic reactor (TAcoD 1). In the modified TAcoD (TAcoD 2), only FW was fed into the acidogenic reactor, and the produced hydrolyzed solid was directly converted to the organic fertilizer, while the supernatant with high soluble chemical demand (SCOD) concentration was further co-digested with SS in the methanogenic reactor.

Results: Although TAcoD 1 produced bio-methane yield and potential energy of 56.18% and 1.6-fold higher than TAcoD 2, the economical valorization of TAcoD 2 was 9-fold of that from TAcoD 1. The supernatant quality of TAcoD 2 was far better than TAcoD 1, since the SCOD, total nitrogen (TN), and total phosphor (TP) removal in TAcoD 2 and TAcoD 1 were 94.3%, 79.4%, 90.7%, and 68.9%, 28%, 46%, respectively. In terms of solid waste management, the modified TAcoD converted FW to organic fertilizer and achieved a solid reduction of 43.62% higher than that of conventional TAcoD.

Conclusions: This new modification in two-phase anaerobic co-digestion of food waste and sewage sludge provides a potentially feasible practice for simultaneous bio-methane, organic fertilizer, and high supernatant quality achievement.

Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-020-00603-8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172668PMC
http://dx.doi.org/10.1007/s40201-020-00603-8DOI Listing

Publication Analysis

Top Keywords

organic fertilizer
16
tacod
15
two-phase anaerobic
12
anaerobic co-digestion
12
food waste
12
sewage sludge
12
supernatant quality
12
co-digestion food
8
waste sewage
8
fertilizer high
8

Similar Publications

Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.

View Article and Find Full Text PDF

Sesame ( L.) is an important cash crop and plays a vital role in many people's livelihoods in Ethiopia. However, its production is low due to many constraints, and low soil fertility is among the major.

View Article and Find Full Text PDF

Towards circularity for agro-waste: Minimal soil hazards of olive pomace bioconverted frass by insect larvae as an organic fertilizer.

J Environ Manage

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

As global populations escalate and the demand for food and feed intensifies, the generation of agri-food waste is becoming an increasingly critical issue. Addressing this challenge is crucial for optimizing food production and advancing sustainable waste management practices. In this context, insects, including the Black Soldier Fly (BSF, Hermetia illucens), present opportunities for circularity through the bioconversion of organic waste.

View Article and Find Full Text PDF

Soil Microbial Mechanisms to Improve Pear Seedling Growth by Applying Bacillus and Trichoderma-Amended Biofertilizers.

Plant Cell Environ

January 2025

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China.

Bacillus velezensis SQR9 or Trichoderma harzianum NJAU4742-amended bioorganic fertilizers might significantly improve the soil microbial community and crop yields. However, the mechanisms these microorganisms act are far away from distinctness. We combined amplicon sequencing with culturable approaches to investigate the effects of these microorganisms on pear tree growth, rhizosphere nutrients and microbial mechanisms.

View Article and Find Full Text PDF

Rural-urban transformation shapes oasis agriculture in Morocco's High Atlas Mountains.

Sci Rep

January 2025

Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstrasse 19, 37213, Witzenhausen, Germany.

Traditional agricultural activities and rural livelihoods in Morocco's High Atlas Mountains are rapidly changing. This is triggered by increasing rural-urban interactions and new livelihood opportunities in cities. A typical example is the oasis of Tizi N'Oucheg in the country's High Atlas Mountains, which over centuries was largely self-sufficient in food grain and livestock production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!