Amoxicillin separation from aqueous solution by negatively charged silica composite membrane.

J Environ Health Sci Eng

Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

Published: June 2021

Silica composite membranes were successfully prepared by acid/ base-catalyzed sol-gel method and characterized by SEM, FTIR, AFM and contact angle Low isoelectric point of the silica layers provided negatively charged composite membranes, resulting electrostatic repulsion forces between membrane surface and amoxicillin molecules at higher pHs. The rejection rate of amoxicillin was studied systematically at different pHs, solute concentrations, transmembrane pressures and temperatures. It was found that acid-catalyzed membrane has higher amoxicillin rejection ratio compared to base-catalyzed membrane. Especially, acid-catalyzed membrane achieved the highest rejection of 90% at the transmembrane pressure of 6 bar, 45 °C, pH = 10, and initial feed concentration of 50 ppm. Long term stability exhibit that the membrane performance in permeation flux was steady for up to 100 h. However, the AMX rejection of 89% was maintained for over 250 h in acid-catalyzed membrane. It was concluded that the use of negatively charged ceramic membranes is promising for removal of amoxicillin from water resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172706PMC
http://dx.doi.org/10.1007/s40201-020-00586-6DOI Listing

Publication Analysis

Top Keywords

negatively charged
12
acid-catalyzed membrane
12
silica composite
8
composite membranes
8
membrane
7
amoxicillin
5
amoxicillin separation
4
separation aqueous
4
aqueous solution
4
solution negatively
4

Similar Publications

MEDOC: A Fast, Scalable, and Mathematically Exact Algorithm for the Site-Specific Prediction of the Protonation Degree in Large Disordered Proteins.

J Chem Inf Model

January 2025

Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany.

Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound p values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain p values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

Quercetin protective potential against nanoparticle-induced adverse effects.

Nanotoxicology

January 2025

LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.

The rapid development of nanotechnology has resulted in the widespread use of nanoparticles (NPs) in various sectors due to their unique properties and diverse applications. However, the increased exposure of humans to NPs raises concerns about their potential negative impact on human health and the environment. The pathways through which NPs exert adverse effects, including inflammation and oxidative stress, are primarily influenced by their size, shape, surface charge, and chemistry, underscoring the critical need to comprehend and alleviate their potential detrimental impacts.

View Article and Find Full Text PDF

Lipid A, a well-known saccharolipid, acts as the inner lipid-glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!