Epilepsy is one of the most frequent neurological disorders characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in the pathways of neurodegenerations leading to epilepsy. Approximately, one-third of the epileptic patients who suffer from seizures do not receive effective medical treatment. Sodium valproate (SVP) is a commonly used antiepileptic drug (AED); however, it has toxic effects. Lutein (L), a carotenoid, has potent antioxidant and anti-inflammatory properties. The aim of this study was to determine the neuroprotective effect of sodium valproate (SVP) and lutein (L) in a rat model of pilocarpine- (PLC-) induced epilepsy. To achieve this aim, fifty rats were randomly divided into five groups. Group I: control, group II: received PLC (400 mg/kg intraperitoneally), group III: received PLC + SVP (500 mg/kg orally), group IV: received PLC + SVP + L (100 mg/kg orally), and group V: received (PLC + L). Racine Scale (RC) and latency period to onset seizure were calculated. After eight weeks, the hippocampus rotarod performance and histological investigations were performed. Oxidative stress was investigated in hippocampal homogenates. Results revealed that SVP and L, given alone or in combination, reduced the RC significantly, a significant delay in latency to PLC-kindling onset, and improved rotarod performance of rats compared with the PLC group. Moreover, L was associated with a reduction of oxidative stress in hippocampal homogenate, a significant decrease in serum tumor necrosis factor-alpha (TNF-) level, and inhibition of cerebral injury and displayed antiepileptic properties in the PLC-induced epileptic rat model. Data obtained from the current research elucidated the prominent neuroprotective, antioxidant, and anti-inflammatory activities of lutein in this model. In conclusion, lutein cotreatment with AEDs is likely to be a promising strategy to improve treatment efficacy in patients suffering from epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195670 | PMC |
http://dx.doi.org/10.1155/2021/5549638 | DOI Listing |
Nutrients
January 2025
Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Background/objectives: Autism spectrum disorder (ASD) is characterized by impaired social interaction and repetitive stereotyped behavior. Effective interventions for the core autistic symptoms are currently limited.
Methods: This study employed a valproic acid (VPA)-induced mouse model of ASD to assess the preventative effects of L-proline supplementation on ASD-like behaviors.
Pharmaceuticals (Basel)
December 2024
Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt.
: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi 260-8670, Chiba, Japan.
Drug-induced gingival overgrowth is associated with various systemic diseases, including epilepsy. Among antiepileptic medications, phenytoin is commonly reported to cause this condition. In contrast, sodium valproate (VPA), another widely used antiepileptic drug, rarely induces gingival overgrowth.
View Article and Find Full Text PDFCells
January 2025
IRCCS Stella Maris Foundation, 56128 Pisa, Italy.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social skills and the presence of repetitive and restricted behaviors and interests. The social behavior of the zebrafish (Danio rerio) makes this organism a valuable tool for modeling ASD in order to explore the social impairment typical of this disorder. In addition to transgenic models, exposure of zebrafish embryos to valproic acid (VPA) has been found to produce ASD-like symptoms.
View Article and Find Full Text PDFCells
January 2025
Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!