Polypyrimidine tract-binding protein 1 regulates the Sertoli cell blood-testis barrier by promoting the expression of tight junction proteins.

Exp Ther Med

Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.

Published: August 2021

Sertoli cells (SCs) are an important component of spermatogenic tubules. The blood-testis barrier (BTB) is composed of SCs and is necessary for the development and maturity of spermatogenic cells. When the tight connection between SCs is destroyed, the BTB loses its integrity, leading to impaired spermatogenesis. Polypyrimidine tract-binding protein 1 (PTBP1) is a key protein involved in precursor mRNA splicing and selective splicing events, which directly affects tumor cell proliferation and influences the formation of the blood-tumor barrier by regulating the expression levels of tight junction-associated proteins. The present study revealed that the expression of PTBP1 was downregulated following a decrease in spermatogenic activity at the phase of senescence. TM4 cells were transfected with lentivirus-short hairpinRNA-PTBP1 to evaluate the effect of silencing PTBP1 on the expression levels of tight junction proteins and the integrity of tight junctions between adjacent SCs. Western blot analysis indicated that the expression levels of Zonula occludens 1, occludin and claudin-5 decreased significantly due to silencing of PTBP1 in SCs. Through detecting trans-epithelial electrical resistance, it was revealed that silencing of PTBP1 broke the integrity of tight junctions between adjacent SCs. The results suggested that PTBP1 maintained the integrity of the BTB by promoting the expression levels of tight junction-associated proteins and revealed the possible mechanism of PTBP1 in regulating spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8210256PMC
http://dx.doi.org/10.3892/etm.2021.10279DOI Listing

Publication Analysis

Top Keywords

expression levels
16
levels tight
12
silencing ptbp1
12
polypyrimidine tract-binding
8
tract-binding protein
8
blood-testis barrier
8
promoting expression
8
tight junction
8
junction proteins
8
tight junction-associated
8

Similar Publications

Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A.

Diabetes Metab J

January 2025

NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) represents a significant global health challenge, with approximately 1.8 million new cases diagnosed annually and a mortality toll exceeding 881,000 lives each year. This study aimed to evaluate the chemoprotective efficacy of Cyanidin-3-glucoside (C3G) in a rat model of CRC induced by 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity.

Exp Mol Med

January 2025

Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.

Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.

View Article and Find Full Text PDF

During the genomic characterisation of Enterococcus faecium strains (n = 39) collected in a haematology ward, we identified an isolate (OI25), which contained vanA-type vancomycin resistance genes but was phenotypically susceptible to vancomycin. OI25 could revert to resistance when cultured in the presence of vancomycin and was thus considered to be vancomycin-variable. Long-read sequencing was used to identify structural variations within the vancomycin resistance region of OI25 and to uncover its resistance reversion mechanism.

View Article and Find Full Text PDF

Profile and resistance levels of 136 integron resistance genes.

NPJ Antimicrob Resist

October 2023

Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.

Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!