Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209466 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.678771 | DOI Listing |
Transl Psychiatry
January 2025
German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
Inflammation is a probable biological pathway underlying the relationship between diabetes and depression, but data on differences between diabetes types and symptom clusters of depression are scarce. Therefore, this cross-sectional study aimed to compare associations of a multimarker panel of biomarkers of inflammation with depressive symptoms and its symptom clusters between people with type 1 diabetes (T1D) and type 2 diabetes (T2D). This cross-sectional study combined data from five studies including 1260 participants (n = 706 T1D, n = 454 T2D).
View Article and Find Full Text PDFDiabet Med
January 2025
School of Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, Scotland.
Type 2 diabetes (T2D) is a complex condition characterised by the interaction between insulin resistance and beta cell dysfunction. C-peptide, a key biomarker of endogenous insulin secretion, has a role in diagnosing type 1 diabetes (T1D). However, its utility in T2D has not been extensively studied.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
Objectives: The aim of this systematic review was to assess the effect of DM (Type 1 and Type 2 Diabetes) and hyperglycaemia on the physical and mechanical properties of dentine which is critical for successful endodontic treatment.
Method: An electronic search of the following databases: PubMed, MEDLINE, Web of Science and the grey literature was performed up until July 2024. In vitro and in vivo studies on the effect of DM or hyperglycaemia on the mechanical and physical properties of dentine were included.
Biomed Eng Lett
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006 China.
Background: NAFLD is gaining recognition as a complex, multifactorial condition with suspected associations with endocrine disorders. This investigation employed MR analysis to explore the potential causality linking NAFLD to a spectrum of endocrine diseases, encompassing T1D, T2D, obesity, graves' disease, and acromegaly.
Methods: Our methodology leveraged a stringent IV selection process, adhering to the STROBE-MR guidelines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!