At present, lots of studies have tried to apply machine learning to different electroencephalography (EEG) measures for diagnosing schizophrenia (SZ) patients. However, most EEG measures previously used are either a univariate measure or a single type of brain connectivity, which may not fully capture the abnormal brain changes of SZ patients. In this paper, event-related potentials were collected from 45 SZ patients and 30 healthy controls (HCs) during a learning task, and then a combination of partial directed coherence (PDC) effective and phase lag index (PLI) functional connectivity were used as features to train a support vector machine classifier with leave-one-out cross-validation for classification of SZ from HCs. Our results indicated that an excellent classification performance (accuracy = 95.16%, specificity = 94.44%, and sensitivity = 96.15%) was obtained when the combination of functional and effective connectivity features was used, and the corresponding optimal feature number was 15, which included 12 PDC and three PLI connectivity features. The selected effective connectivity features were mainly located between the frontal/temporal/central and visual/parietal lobes, and the selected functional connectivity features were mainly located between the frontal/temporal and visual cortexes of the right hemisphere. In addition, most of the selected effective connectivity abnormally enhanced in SZ patients compared with HCs, whereas all the selected functional connectivity features decreased in SZ patients. The above results showed that our proposed method has great potential to become a tool for the auxiliary diagnosis of SZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8209471 | PMC |
http://dx.doi.org/10.3389/fnins.2021.651439 | DOI Listing |
Biomed Tech (Berl)
December 2024
66284 School of Design & Art, Shenyang Aerospace University, Shenyang, China.
Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Horticulture, National Chung Hsing University, Taichung City 40227, Taiwan.
Trees are complex and dynamic living structures, where structural stability is essential for survival and for public safety in urban environments. Tree forks, as structural junctions, are key to tree integrity but are prone to failure under stress. The specific mechanical contributions of their internal conical structures remain largely unexplored.
View Article and Find Full Text PDFNutrients
January 2025
Department of Computer Engineering, Inje University, Gimhae 50834, Republic of Korea.
Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.
High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan.
This study investigates how interpersonal (speaker-partner) synchrony contributes to empathetic response generation in communication scenarios. To perform this investigation, we propose a model that incorporates multimodal directional (positive and negative) interpersonal synchrony, operationalized using the cosine similarity measure, into empathetic response generation. We evaluate how incorporating specific synchrony affects the generated responses at the language and empathy levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!