Handheld plasmonic biosensor for virus detection in field-settings.

Sens Actuators B Chem

Department of Biomedical Engineering, TOBB University of Economics and Technology, Cankaya, Ankara, 06560, Turkey.

Published: October 2021

After World Health Organization (WHO) announced COVID-19 outbreak a pandemic, we all again realized the importance of developing rapid diagnostic kits. In this article, we introduced a lightweight and field-portable biosensor employing a plasmonic chip based on nanohole arrays integrated to a lensfree-imaging framework for label-free detection of viruses in field-settings. The platform utilizes a CMOS (complementary metal-oxide-semiconductor) camera with high quantum efficiency in the spectral window of interest to monitor diffraction field patterns of nanohole arrays under the uniform illumination of an LED (light-emitting diode) source which is spectrally tuned to the plasmonic mode supported by the nanohole arrays. As an example for the applicability of our biosensor for virus detection, we could successfully demonstrate the label-free detection of H1N1 viruses, e.g., swine flu, with medically relevant concentrations. We also developed a low-cost and easy-to-use sample preparation kit to prepare the surface of the plasmonic chip for analyte binding, e.g., virus-antibody binding. In order to reveal a complete biosensor technology, we also developed a user friendly Python™ - based graphical user interface (GUI) that allows direct access to biosensor hardware, taking and processing diffraction field images, and provides virus information to the end-user. Employing highly sensitive nanohole arrays and lensfree-imaging framework, our platform could yield an LOD as low as 10 TCID/mL. Providing accurate and rapid sensing information in a handheld platform, weighing only 70 g and 12 cm tall, without the need for bulky and expensive instrumentation, our biosensor could be a very strong candidate for diagnostic applications in resource-poor settings. As our detection scheme is based on the use of antibodies, it could quickly adapt to the detection of different viral diseases, e.g., COVID-19 or influenza, by simply coating the plasmonic chip surface with an antibody possessing affinity to the virus type of interest. Possessing this ability, our biosensor could be swiftly deployed to the field in need for rapid diagnosis, which may be an important asset to prevent the spread of diseases before turning into a pandemic by isolating patients from the population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206576PMC
http://dx.doi.org/10.1016/j.snb.2021.130301DOI Listing

Publication Analysis

Top Keywords

nanohole arrays
16
plasmonic chip
12
biosensor virus
8
virus detection
8
lensfree-imaging framework
8
label-free detection
8
diffraction field
8
biosensor
7
detection
6
handheld plasmonic
4

Similar Publications

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF

Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.

View Article and Find Full Text PDF

Tips versus Holes: ×10 Higher Scattering in FIB-made Plasmonic Nanoscale Arrays for Spectral Imaging.

ACS Omega

November 2024

Advanced Laboratory of Electro-Optics (ALEO), Department of Applied Physics/Electro-Optics Engineering, Lev Academic Center, Jerusalem 9116001, Israel.

Plasmonic nanostructure arrays, designed for performance as pixels in an advanced SERS imaging device, were fabricated by gallium focused ion beam (FIB). Though the FIB is best suited for etching holes and negative structures, our previously reported simulations favor protrusions. Herein, we report on the FIB methodology to "sculpt" positive structures by "ion-blasting" away the surrounding material.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the use of nano-hole array photonic crystal structures in Ge-on-Si single photon avalanche diodes (SPADs) to enhance their performance, specifically focusing on single photon detection efficiencies (SPDE).
  • It highlights the need for research into the effects of these structures on SPDE and dark count rates, establishing a platform for optimization and analysis of photonic crystals within SPAD devices.
  • Simulations indicate that optimized photonic crystal designs could significantly boost photon absorption to 37.09% at 1550 nm, potentially resulting in over 2.4 times higher SPDE and improved noise-equivalent power if surfaces are well-passivated.
View Article and Find Full Text PDF

In this work, we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process that enables fabrication with high yields of around 90%. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm (40 µm x 40 µm) show dark current densities of around 129 mA/cm and responsivities of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!