AI Article Synopsis

Article Abstract

Unlabelled: Three-dimensional (3D) spheroid cell cultures are excellent models used in cancer biology research and drug screening. The objective of this study was to develop a lung carcinoma spheroid based microfluidic platform with perfusion function to mimic lung cancer pathology and investigate the effect of a potential drug molecule, panaxatriol. Spheroids were successfully formed on agar microtissue molds at the end of 10 days, reaching an average diameter of about 317.18 ± 4.05 μm and subsequently transferred to 3D dynamic microfluidic system with perfusion function. While the size of the 3D spheroids embedded in the Matrigel matrix in the platform had gradually increased both in the static and dynamic control groups, the size of the spheroids were reduced and fragmented in the drug treated groups. Cell viability results showed that panaxatriol exhibited higher cytotoxic effect on cancer cells than healthy cells and the IC value was determined as 61.55 µM. Furthermore, panaxatriol has been more effective on single cells around the spheroid structure, whereas less in 3D spheroid tissues with a compact structure in static conditions compared to dynamic systems, where a flow rate of 2 µL/min leading to a shear stress of 0.002 dyne/cm was applied. Application of such dynamic systems will contribute to advancing basic research and increasing the predictive accuracy of potential drug molecules, which may accelerate the translation of novel therapeutics to the clinic, possibly decreasing the use of animal models.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-021-00470-7.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8167023PMC
http://dx.doi.org/10.1007/s10616-021-00470-7DOI Listing

Publication Analysis

Top Keywords

lung carcinoma
8
spheroids embedded
8
microfluidic platform
8
perfusion function
8
potential drug
8
size spheroids
8
dynamic systems
8
spheroids
4
carcinoma spheroids
4
embedded microfluidic
4

Similar Publications

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Sorafenib-Loaded Silica-Containing Redox Nanoparticle Decreases Tumorigenic Potential of Lewis Lung Carcinoma.

Pharmaceutics

January 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.

Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).

View Article and Find Full Text PDF

Etoposide as a Key Therapeutic Agent in Lung Cancer: Mechanisms, Efficacy, and Emerging Strategies.

Int J Mol Sci

January 2025

Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.

Topoisomerase II inhibitors, particularly etoposide, have long been integral to the treatment of lung cancer, especially small cell lung cancer. This review comprehensively examines the mechanisms of action of etoposide, its clinical efficacy, and its role in current lung cancer treatment regimens. Etoposide exerts its anticancer effects by inducing DNA strand breaks through the inhibition of topoisomerase II, leading to cancer cell apoptosis.

View Article and Find Full Text PDF

Microbiota could be of interest in the diagnosis of colorectal and non-small cell lung cancer (CRC and NSCLC). However, how the microbial components of tissues and feces reflect each other remains unknown. In this work, our main objective is to discover the degree of correlation between the composition of the tissue microbiota and that of the feces of patients affected by CRC and NSCLC.

View Article and Find Full Text PDF

Network Pharmacology Approach and Experimental Verification to Explore the Anti-NSCLC Mechanism of Grifolic Acid.

Int J Mol Sci

January 2025

Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.

Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!