Introduction: Spatial sampling is increasingly used in health surveys as it provides a simple way to randomly select target populations on sites where reliable and complete data on the general population are not available. However, the previously implemented protocols have been poorly detailed, making replication difficult or even impossible. To our knowledge, ours is the first document describing step-by-step an efficient spatial sampling method for health surveys. Our objective is to facilitate the rapid acquisition of the technical skills and know-how necessary for its deployment.
Methods: The spatial sampling design is based on the random generation of geocoded points in the study area. Afterwards, these points were projected on the satellite view of Google Earth Pro™ software and the identified buildings were selected for field visits. A detailed formula of the number of points required, considering non-responses, is proposed. Density of buildings was determined by drawing circles around points and by using a replacement strategy when interviewing was unachievable. The method was implemented for a cross-sectional study during the April-May 2016 period in Cotonou (Bénin). The accuracy of the collected data was assessed by comparing them to those of the Cotonou national census.
Result: This approach does not require prior displacement in the study area and only 1% of identified buildings with Google Earth Pro™ were no longer extant. Most of the measurements resulting from the general census were within the confidence intervals of those calculated with the sample data. Furthermore, the range of measurements resulting from the general census was similar to those calculated with the sample data. These include, for example, the proportion of the foreign population (unweighted 8.9%/weighted 9% versus 8.5% in census data), the proportion of adults over 17 years of age (56.7% versus 57% in census data), the proportion of households whose head is not educated (unweighted 21.9%/weighted 22.8% versus 21.1% in census data).
Conclusion: This article illustrates how an epidemiological field survey based on spatial sampling can be successfully implemented at low cost, quickly and with little technical and theoretical knowledge. While statistically similar to simple random sampling, this survey method greatly simplifies its implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.respe.2021.04.140 | DOI Listing |
J Clin Periodontol
January 2025
College of Medicine and Science Mayo Clinic, Rochester, Minnesota, USA.
Background: Periodontal disease (PD) is a prevalent, preventable and treatable oral infection associated with substantial morbidity globally. There is little information from population-representative cohort studies about the sociodemographic, educational and other early life factors that stratify PD risk.
Methods: We used data from the U.
Rev Sci Instrum
January 2025
Dpto. de Física, Facultad de Ingeniería Química, Universidad Nacional del Litoral, S3000 Santa Fe, Argentina and Instituto de Física del Litoral, Santa Fe S3000, Argentina.
A high-speed interferometric system was developed to analyze nanostructured porous silicon (PS) membranes by measuring reflectance variations during capillary filling from both sides. A high-speed camera was employed to capture the reflectance evolution of the entire sample area with the necessary temporal resolution, providing quantitative information on filling dynamics. By integrating these data with a simple fluid dynamic model, it is possible to examine the internal structure of the membranes and determine the effective pore radii profiles along their thickness.
View Article and Find Full Text PDFLab Chip
January 2025
Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France.
X-ray-based methods are powerful tools for structural and chemical studies of materials and processes, particularly for performing time-resolved measurements. In this critical review, we highlight progress in the development of X-ray compatible microfluidic and millifluidic platforms that enable high temporal and spatial resolution X-ray analysis across the chemical and materials sciences. With a focus on liquid samples and suspensions, we first present the origins of microfluidic sample environments for X-ray analysis by discussing some alternative liquid sample holder and manipulator technologies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Background: Alcohol consumption continues to be a public health problem in Ethiopia. Previous investigations have been conducted on alcohol consumption in Ethiopia; however, these investigations were limited to specific localities, which could not represent the existing alcohol consumption in different parts of Ethiopia. Besides, the spatial variation of alcohol consumption was not well investigated in the previous studies, which could hinder the implementation of effective intervention towards alcohol consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!