Background: Acute kidney injury (AKI) is the main life-threatening complication of crush syndrome (CS), and myoglobin is accepted as the main pathogenic factor. The pattern recognition receptor retinoicacid-inducible gene I (RIG-I) has been reported to exert anti-viral effects function in the innate immune response. However, it is not clear whether RIG-I plays a role in CS-AKI. The present research was carried out to explore the role of RIG-I in CS-AKI.

Methods: Sprague-Dawley rats were randomly divided into two groups: the sham and CS groups (n = 12). After administration of anesthesia, the double hind limbs of rats in the CS group were put under a pressure of 3 kg for 16 h to mimic crush conditions. The rats in both groups were denied access to food and water. Rats were sacrificed at 12 h or 36 h after pressure was relieved. The successful establishment of the CS-AKI model was confirmed by serum biochemical analysis and renal histological examination. In addition, RNA sequencing was performed on rat kidney tissue to identify molecular pathways involved in CS-AKI. Furthermore, NRK-52E cells were treated with 200 μmol/L ferrous myoglobin to mimic CS-AKI at the cellular level. The cells and cell supernatant samples were collected at 6 h or 24 h. Small interfering RNAs (siRNA) was used to knock down RIG-I expression. The relative expression levels of molecules involved in the RIG-I pathway in rat kidney or cells samples were measured by quantitative Real-time PCR (qPCR), Western blotting analysis, and immunohistochemistry (IHC) staining. Tumor necrosis factor-α (TNF-α) was detected by ELISA. Co-Immunoprecipitation (Co-IP) assays were used to detect the interaction between RIG-I and myoglobin.

Results: RNA sequencing of CS-AKI rat kidney tissue revealed that the different expression of RIG-I signaling pathway. qPCR, Western blotting, and IHC assays showed that RIG-I, nuclear factor kappa-B (NF-κB) P65, p-P65, and the apoptotic marker caspase-3 and cleaved caspase-3 were up-regulated in the CS group (P < 0.05). However, the levels of interferon regulatory factor 3 (IRF3), p-IRF3 and the antiviral factor interferon-beta (IFN-β) showed no significant changes between the sham and CS groups. Co-IP assays showed the interaction between RIG-I and myoglobin in the kidneys of the CS group. Depletion of RIG-I could alleviate the myoglobin induced expression of apoptosis-associated molecules via the NF-κB/caspase-3 axis.

Conclusion: RIG-I is a novel damage-associated molecular patterns (DAMPs) sensor for myoglobin and participates in the NF-κB/caspase-3 signaling pathway in CS-AKI. In the development of CS-AKI, specific intervention in the RIG-I pathway might be a potential therapeutic strategy for CS-AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8215750PMC
http://dx.doi.org/10.1186/s40779-021-00333-4DOI Listing

Publication Analysis

Top Keywords

rat kidney
12
rig-i
9
cs-aki model
8
rna sequencing
8
kidney tissue
8
qpcr western
8
western blotting
8
cs-aki
6
rig-i novel
4
novel damps
4

Similar Publications

Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.

View Article and Find Full Text PDF

Background And Aim: In the context of gastrointestinal diseases, the role of monoacylglycerol lipase (MAGL) is significant. Therefore, the objective of this study was to examine the protective effects of MAGL inhibition using JZL184 in rat models of severe acute pancreatitis (SAP) and to explore its mechanism.

Methods: In this study, a rat model of SAP was established, and the rats were divided into three groups for treatment: the Control group (CON), the SAP group (SAP), and the SAP group treated with JZL184 (JZL184).

View Article and Find Full Text PDF

Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.

View Article and Find Full Text PDF

Vancomycin, a glycopeptide antibiotic, is used in cases of drug-resistant bacterial infections, but unfortunately is associated with acute kidney injury (AKI). We here explore the protective potential of aprepitant against vancomycin-induced AKI. Vancomycin (500 mg/kg/i.

View Article and Find Full Text PDF

Maternal obesity predisposes offspring to type 2 diabetes (T2D) through a direct chronic effect of lipids on pancreatic β-cell neogenesis. β-cells produce FABP3 to bind and metabolize fatty acids. Ferulic acid (FA) is a natural product that may inhibit fatty acids' binding to FABP3, preventing their toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!