A rapid benchtop method to assess biofilm on marine fouling control coatings.

Biofouling

National Centre for Advanced Tribology at Southampton (nCATS), Department of Mechanical Engineering, University of Southampton, Southampton, UK.

Published: April 2021

A rapid benchtop method to measure the torque associated with minidiscs rotating in water using a sensitive analytical rheometer has been used to monitor the drag caused by marine fouling on coated discs. The method was calibrated using sandpaper surfaces of known roughness. Minidiscs coated with commercial fouling control coatings, plus an inactive control, were exposed in an estuarine harbour. After 176 days the drag on the fouling control-coated discs, expressed as a moment coefficient, was between 73% and 90% less than the drag on the control coating. The method has potential use as a screen for novel antifouling and drag reducing coatings and surfaces. Roughness functions derived using Granville's indirect similarity law are similar to patterns found in the general hydrodynamics literature, and so rotational minidisc results can be considered with reference to other fouling drag datasets.Supplemental data for this article is available online at https://doi.org/10.1080/08927014.2021.1929937 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312500PMC
http://dx.doi.org/10.1080/08927014.2021.1929937DOI Listing

Publication Analysis

Top Keywords

rapid benchtop
8
benchtop method
8
marine fouling
8
fouling control
8
control coatings
8
surfaces roughness
8
fouling
5
drag
5
method
4
method assess
4

Similar Publications

Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale.

View Article and Find Full Text PDF

Benchtop Machining of Self-Standing Alumina Doughs for Low-Number Fabrication and Prototyping.

ACS Appl Mater Interfaces

January 2025

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.

Cold isostatic pressing, gel casting, and protein coagulation are the most common techniques to produce green bodies prior to computer numerical control (CNC)-based machining for the near-net-scale shaping of ceramics. These methods typically involve various additives and entail several steps to create a green body that is capable of withstanding machining forces. Here, utilizing a single additive, we first introduced a facile benchtop method to generate self-standing, malleable doughs of alumina in under 2 min.

View Article and Find Full Text PDF

Grape seed extract (GSE), one of the world's bestselling dietary supplements, is prone to frequent adulteration with chemically similar compounds. These frauds can go unnoticed within the supply chain due to the use of unspecific standard analytical methods for quality control. This research aims to develop a near-infrared spectroscopy (NIRS) method for the rapid and non-destructive quantitative evaluation of GSE powder in the presence of multiple additives.

View Article and Find Full Text PDF

Fluorescence spectroscopy as an indicator tool for pharmaceutical contamination in groundwater and surface water.

Chemosphere

January 2025

National Institute of Aquatic Resources, Section for Oceans and Arctic, Technical University of Denmark, Henrik Dams Allé, Building 201, 2800, Kgs. Lyngby, Denmark. Electronic address:

Knowledge of contaminant distribution and transport of contaminant plumes in groundwater is important for effective remediation. Tedious and expensive laboratory analyses could be supplemented with optical measurements such as fluorescence to offer a rapid alternative with the potential for on-site measurements. Here, we explore the applicability of fluorescence spectroscopy as an on-site alternative to identifying the extent of a groundwater contaminant plume in Grindsted, Denmark.

View Article and Find Full Text PDF

Microphysiological systems (MPS) containing perfusable vascular beds unlock the ability to model tissue-scale elements of vascular physiology and disease in vitro. Access to inexpensive stereolithography (SLA) 3D printers now enables benchtop fabrication of polydimethylsiloxane (PDMS) organ chips, eliminating the need for cleanroom access and microfabrication expertise, and can facilitate broader adoption of MPS approaches in preclinical research. Rapid prototyping of organ chip mold designs accelerates the processes of design, testing, and iteration, but geometric distortion and surface roughness of SLA resin prints can impede the development of standardizable manufacturing workflows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!