In this work, Enteromorpha prolifera derived magnetic biochar (MBC) is prepared for the removal of butachlor (BTR) and characterized. The NaOH added during the magnetic loading process has an activating effect and enhancing the accessibility of the pores. Based on the BET result, the importance of pore accessibility rather than the specific surface area has been proposed. The maximum adsorption capacity of BTR for MBC is 158.5 mg/g. Then, the batch experiment shows that the adsorption of MBC to BTR fitted with the quasi-second-order kinetic model. The effect factors on the BTR removal were studied. Through the result of BET, Raman, XPS and FT-IR, the mechanism of MBC adsorption of butachlor was explored. After 3 cycles, the prepared MBC has a negligible reduction in the removal capacity of BTR, which provides a reference scheme for the large-scale application of Enteromorpha prolifera and the water treatment of BTR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125407DOI Listing

Publication Analysis

Top Keywords

enteromorpha prolifera
12
prolifera derived
8
pore accessibility
8
removal butachlor
8
capacity btr
8
btr
6
mbc
5
facile one-pot
4
one-pot magnetic
4
magnetic modification
4

Similar Publications

With years of green tide outbreaks in the Southern Yellow Sea (SYS) and climate change, early findings over multiple years suggest that the green tide may originate from various pathways. Previous studies have identified attached outbreak species of U. prolifera in the intertidal zone along the SYS coast.

View Article and Find Full Text PDF

The bioavailability and component characteristics of the aging dissolved organic matter (DOM) from the macroalgae Ulva prolifera in seawater.

Mar Environ Res

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 2066061, China. Electronic address:

The world's largest green tide, caused by Ulva prolifera, in the Yellow Sea negatively affects the social and economic development of China's coastal region. The dissolved organic matter (DOM) released from U. prolifera is a potential threat to the offshore ecological health.

View Article and Find Full Text PDF

Sulfur metabolism and response to light in Ulva prolifera green tides.

Environ Pollut

February 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.

The outbreak of Ulva prolifera blooms causes significant changes in the coastal sulfur cycle due to the high production of dimethylsulfoniopropionate (DMSP) and the emission of dimethylsulfide (DMS). However, the sulfur metabolism mechanism of U. prolifera has not been thoroughly investigated.

View Article and Find Full Text PDF

New insights on the impact of light, photoperiod and temperature on the reproduction of green algae Ulva prolifera via transcriptomics and physiological analyses.

Mar Pollut Bull

December 2024

Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo 315700, China. Electronic address:

Ulva prolifera, a key species in China's massive green tides, is widely used in aquaculture, biofuel, pharmaceutical and cosmetic industries. In this study, we cultured U. prolifera under 100, 200, and 400 μmol m s with 10:14 and 12:12 light/dark at 15 °C and 25 °C, respectively, to investigate the effectiveness of light intensity, photoperiod, and temperature on the reproduction cell formation, oxidative status, photosynthesis on this species, as well as the related genes from transcriptomic perspective.

View Article and Find Full Text PDF

In this study, we demonstrate a new all bio-based adsorbent material by treating Enteromorpho prolifera (EP) fibers with tannic acid-ferric chloride complex and then grafting hydrophobic group octadecylamine. All raw materials are easily available, low-cost, and safe. The modified EP fibers have approximately 63.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!