A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sn modified nanoporous Ge for improved lithium storage performance. | LitMetric

Sn modified nanoporous Ge for improved lithium storage performance.

J Colloid Interface Sci

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China; Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300401, China; Research Institute of Foundry, Hebei University of Technology, Tianjin 300401, China. Electronic address:

Published: November 2021

Although high-capacity germanium (Ge) has been regarded as the promising anode material for lithium ion batteries (LIBs), its actual performance is far from expectation because of low electrical conductivity and rapid capacity decay during cycling. In this work, Sn modified nanoporous Ge materials with different Ge/Sn atomic ratios in precursors were synthesized by a simple melt-spinning and dealloying strategy. As the anodes of LIBs, Sn modified nanoporous Ge materials display improved cycling stability compared with Sn-free nanoporous Ge, revealing a potential role of Sn in improving electrochemical properties of Ge-based anodes. In particular, Sn modified nanoporous Ge with Ge/Sn atomic ratio of 3:1 presents the best Li storage performance among measured electrodes, delivering a reversible capacity of 974 mA h g after 500 cycles at 200 mA g. It is found that the introduction of appropriate amount of Sn can not only regulate the nanoporous structure of Ge to better alleviate volume expansion, but also improves the conductivity and activity of the electrode material. This improvement is demonstrated by density functional theory calculations. The study uncovers a route to improve Li storage properties by rationally modify Ge-based anodes with Sn, which may facilitate the development of high-performance LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.06.046DOI Listing

Publication Analysis

Top Keywords

modified nanoporous
16
storage performance
8
nanoporous materials
8
ge/sn atomic
8
ge-based anodes
8
nanoporous
5
modified
4
nanoporous improved
4
improved lithium
4
lithium storage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!