AI Article Synopsis

  • The study examines the complex genetic factors behind peripheral T-cell lymphoma (PTCL) and introduces a new multiplex ligation-dependent RT-PCR assay for detecting 33 associated fusion transcripts simultaneously, which is crucial since current detection methods are costly and slow.
  • The assay successfully identified anaplastic lymphoma kinase (ALK) fusions in most ALK-positive cases, and also revealed several non-ALK fusion transcripts mainly derived from follicular helper T-cells in various PTCL samples.
  • The method's effectiveness was confirmed using traditional RT-PCR and Sanger sequencing, highlighting its potential as a reliable tool for analyzing these diverse lymphomas in clinical settings.

Article Abstract

The genetic basis of peripheral T-cell lymphoma (PTCL) is complex and encompasses several recurrent fusion transcripts discovered over the past years by means of massive parallel sequencing. However, there is currently no affordable and rapid technology for their simultaneous detection in clinical samples. Herein, we developed a multiplex ligation-dependent RT-PCR-based assay, followed by high-throughput sequencing, to detect 33 known PTCL-associated fusion transcripts. Anaplastic lymphoma kinase (ALK) fusion transcripts were detected in 15 of 16 ALK-positive anaplastic large-cell lymphomas. The latter case was further characterized by a novel SATB1_ALK fusion transcript. Among 239 other PTCLs, representative of nine entities, non-ALK fusion transcripts were detected in 24 samples, mostly of follicular helper T-cell (TFH) derivation. The most frequent non-ALK fusion transcript was ICOS_CD28 in nine TFH-PTCLs, one PTCL not otherwise specified, and one adult T-cell leukemia/lymphoma, followed by VAV1 rearrangements with multiple partners (STAP2, THAP4, MYO1F, and CD28) in five samples (three PTCL not otherwise specified and two TFH-PTCLs). The other rearrangements were CTLA4_CD28 (one TFH-PTCL), ITK_SYK (two TFH-PTCLs), ITK_FER (one TFH-PTCL), IKZF2_ERBB4 (one TFH-PTCL and one adult T-cell leukemia/lymphoma), and TP63_TBL1XR1 (one ALK-negative anaplastic large-cell lymphoma). All fusions detected by our assay were validated by conventional RT-PCR and Sanger sequencing in 30 samples with adequate material. The simplicity and robustness of this targeted multiplex assay make it an attractive tool for the characterization of these heterogeneous diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2021.04.013DOI Listing

Publication Analysis

Top Keywords

fusion transcripts
20
peripheral t-cell
8
t-cell lymphoma
8
transcripts detected
8
anaplastic large-cell
8
fusion transcript
8
non-alk fusion
8
adult t-cell
8
t-cell leukemia/lymphoma
8
fusion
7

Similar Publications

SQSTM1/p62 predicts prognosis and upregulates the transcription of CCND1 to promote proliferation in mantle cell lymphoma.

Protoplasma

January 2025

Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.

Mantle cell lymphoma (MCL) is a rare, highly invasive non-Hodgkin's lymphoma. The main pathogenesis of MCL is associated with the formation of the IgH/CCND1 fusion gene and nuclear overexpression of cyclin D1, which accelerates the cell cycle, leading to tumorigenesis. The prognosis with current standard chemotherapy is still unsatisfactory.

View Article and Find Full Text PDF

Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Cognitive Neuroscience Center, University of San Andrés, Victoria, Buenos Aires, Argentina.

Background: Digital health research on Alzheimer's disease (AD) points to automated speech and language analysis (ASLA) as a globally scalable approach for diagnosis and monitoring. However, most studies target uninterpretable features in Anglophone samples, casting doubts on the approach's clinical utility and cross-linguistic validity. The present study was designed to tackle both issues.

View Article and Find Full Text PDF

The prognosis of pediatric acute myeloid leukemia (AML) remains poor compared with pediatric acute lymphoblastic leukemia (ALL); accurate diagnosis and treatment strategies based on the genomic background are strongly needed. Recent advances in sequencing technologies have identified novel pediatric AML subtypes, including BCL11B structural variants and UBTF tandem duplications (UBTF-TD), associated with poor prognosis. In contrast, these novel subtypes do not fit into the diagnostic systems for AML of the 5th edition WHO classification or International Consensus Classifications (ICC) released in 2022.

View Article and Find Full Text PDF

Background: The histologic classification of rhabdomyosarcoma (RMS) as alveolar (aRMS) or embryonal (eRMS) is of prognostic importance, with the aRMS being associated with a worse outcome. Specific gene fusions (PAX3/7::FOXO1) found in the majority of aRMS have been recognized as markers associated with poor prognosis and are included in current risk stratification instead of histologic subtypes in localized disease. In metastatic disease, the independent prognostic significance of fusion status has not been definitively established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!