AI Article Synopsis

  • Pigmentation patterning systems help us understand how developmental changes create a variety of colors and patterns in marine fish, although the reasons behind these patterns are still not clear for many species.
  • Anemonefishes have been popular in aquaculture and have produced several distinct mutant lines, particularly in color variations, which attract attention in the pet trade.
  • This review compiles data on color pattern alterations in anemonefish, enabling comparisons of mutations and enhancing our understanding of their genetic and biological mechanisms.

Article Abstract

Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214269PMC
http://dx.doi.org/10.1186/s13227-021-00178-xDOI Listing

Publication Analysis

Top Keywords

marine fish
8
variation theme
4
theme pigmentation
4
pigmentation variants
4
variants mutants
4
anemonefish
4
mutants anemonefish
4
anemonefish pigmentation
4
pigmentation patterning
4
patterning systems
4

Similar Publications

Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management.

Sci Rep

December 2024

Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.

Assessing actual and potential impacts of non-native species is necessary for prioritising their management. Traditional assessments often occur at the species level, potentially overlooking differences among populations. The recently developed Dispersal-Origin-Status-Impact (DOSI) assessment scheme addresses this by treating biological invasions as population-level phenomena, incorporating the complexities affecting populations of non-native species.

View Article and Find Full Text PDF

The development of management strategies for the promotion of sustainable fisheries relies on a deep knowledge of ecological and evolutionary processes driving the diversification and genetic variation of marine organisms. Sustainability strategies are especially relevant for marine species such as the European sardine (Sardina pilchardus), a small pelagic fish with high ecological and socioeconomic importance, especially in Southern Europe, whose stock has declined since 2006, possibly due to environmental factors. Here, we generated sequences for 139 mitochondrial genomes from individuals from 19 different geographical locations across most of the species distribution range, which was used to assess genetic diversity, diversification history and genomic signatures of selection.

View Article and Find Full Text PDF

Chromosome-level genome assembly of the northern snakehead (Channa argus) using PacBio and Hi-C technologies.

Sci Data

December 2024

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.

The evolutionary origins of specialized organs pose significant challenges for empirical studies, as most such organs evolved millions of years ago. The Northern snakehead (Channa argus), an air-breathing fish, possesses a suprabranchial organ, a common feature of the Anabantoidei, offering a unique opportunity to investigate the function and evolutionary origins of specialized organs. In this study, a high-quality chromosome-level reference genome of C.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

The association of parasites and diatoms has been previously reported as an important mechanism to control bacteria and parasites to avoid resistance to chemical usage. The aim of this study was to investigate the association between diatoms genus and parasites within the gastrointestinal compartments (GICs) of commercial fish in fisheries of the marine Pacific coast of Colombia (Buenaventura). A total of 104 GICs from marine fish were sampled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!