Beaches are good indicators for local microplastic distribution and pollution. Multiple methods have been developed for extracting microplastics from sediment through density separation. However, the chemicals applied are often expensive and harmful to the user or the environment. We briefly review the problems associated with the use of these chemicals and present a new floatation medium, potassium carbonate (KCO), that has many advantages over other available media. It is non-toxic and cheap, and with a density of 1.54 g/cm the KCO solution yielded a mean recovery rate of around 90% for PVC, one of the densest polymers, that cannot be easily extracted with alternative floatation media. We propose that the use of KCO is particularly promising for long term and large-scale monitoring studies, because it allows involving citizen scientists in such studies, leading to an increased public awareness of the plastic problem in the seas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2021.112618DOI Listing

Publication Analysis

Top Keywords

potassium carbonate
8
carbonate kco
8
kco
4
kco cheap
4
cheap non-toxic
4
non-toxic high-density
4
high-density floating
4
floating solution
4
solution microplastic
4
microplastic isolation
4

Similar Publications

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

Environ Sci Technol

January 2025

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

Article Synopsis
  • Immobilized carbonic anhydrase (CA) enhances CO absorption in potassium carbonate (PC) solutions, presenting a viable alternative to traditional amine-based carbon capture methods.
  • The study developed cross-scale models to assess how different enzyme immobilization materials—ranging from nanoparticle to macro-scale carriers—affect CO absorption rates, finding that nanoscale carriers are most effective.
  • While increasing enzyme activity can boost absorption rates, diffusion limits, particularly in the liquid phase, impose an upper limit to this enhancement, and smaller particle sizes below 0.35 μm significantly improve performance over benchmark solutions.
View Article and Find Full Text PDF

Spatial and seasonal abundance and characteristics of microplastics along the Red River to the Gulf of Tonkin, Vietnam.

Sci Total Environ

December 2024

Aix Marseille Univ, CNRS, LCE, Laboratoire Chimie Environnement, FR ECCOREV, ITEM, OCEAN, Aix-en-Provence, France. Electronic address:

This study aimed to examine the occurrence of microplastics in surface water and sediment samples collected from Hanoi to the Ba Lat estuary along the Red River, the second-largest river in Vietnam (surface area: 156,451 km). 21 stations were sampled during the dry (March 2023) and rainy (September 2023) seasons. The analytical procedure involved: digestion with hydrogen peroxide, flotation with potassium carbonate, and overflow filtration.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) represent an innovative and environmentally friendly approach for chitin isolation. Chitin is a natural nitrogenous polysaccharide, characterized by its abundance of amino and hydroxyl groups. The hydrogen bond network in DES can disrupt the crystalline structure of chitin, facilitating its isolation from bioresources by dissolving or degrading other components.

View Article and Find Full Text PDF

Industrial CO emissions contribute to pollution and greenhouse effects, highlighting the importance of carbon capture. Potassium carbonate (KCO) is an effective CO absorbent, yet its liquid-phase absorption faces issues like diffusion resistance and corrosion risks. In this work, the solid adsorbents were developed with KCO immobilized on the selected porous supports.

View Article and Find Full Text PDF

High-performing zeolite materials for carbon dioxide capture are promising for applications such as flue gas CO capture. Potassium carbonate-loaded zeolites can offer a plethora of benefits. In this work, for the first time, zeolite-Y impregnated with KCO was studied as a gas adsorbent (CO, CH, and N) and characterized using TGA (thermogravimetric analyzer), XRD, BET, FTIR, FETEM (Field-Emission Transmission Electron Microscope), and XPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!