Nurdles, the pre-production plastic pellets, are a major source of plastic pollution in marine environments due to unregulated spills during production and transportation. We analyzed the types of plastics and associated organic pollutants on nurdles collected along the shoreline of Gulf of Mexico in Texas. Our results showed that the nurdles were made from polyethylene (81.9%) and polypropylene (18.1%). Polycyclic aromatic hydrocarbons (PAHs, 16 US EPA priority) and polychlorinated biphenyls (PCBs, 7 commercial congeners) sorbed to the nurdles were in concentration ranges of 1.6-14,700 ng/ g and 0-642 ng/ g, respectively. Heavily weathered nurdles tended to have higher concentrations of PAHs and PCBs than lightly weathered ones. The bioaccessibility of sorbed contaminants was evaluated using a simulated intestinal fluid. The results showed that the associated PAHs were more bioaccessible in lightly weathered nurdles (13.1 ± 2.3%) than heavily weathered one (5.3 ± 0.1%), and that no PCBs were bioaccessible. These findings are informative for toxicity evaluation and resource management of plastic debris in coastal environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112592 | DOI Listing |
Sci Rep
December 2024
Department of Environmental Management and Toxicology, Michael Okpara University of Agriculture, Umudike, Nigeria.
The geochemical and chemical constituents of river water quality could be influenced by human activities and organic processes like water interacting with the lithogenic structure that the river flows through. Evaluating evidence based primary root of the predominant pollutant ions, their interactions as well as the factors controlling their dominance is crucial in studies regarding water environment and hydrology especially as most studies focus on theoretical methods. In order to understand the water cycle, safeguard surface water resources, and preserve the human environment, this study evaluated surface water hydro-chemical facies, quality dynamics, and portability in southern Nigeria using multivariate statistical approaches by analyzing selected hydro-chemical characteristics as indicators of pollution along the river during wet and dry seasons.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.
View Article and Find Full Text PDFNat Commun
December 2024
School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China.
Fine particulate matter has been linked with acute coronary syndrome. Nevertheless, the key constituents remain unclear. Here, we conduct a nationwide case-crossover study in China during 2015-2021 to quantify the associations between fine particulate matter constituents (organic matter, black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome, and to identify the critical contributors.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!