Identification of paralytic shellfish poison producing algae based on three-dimensional fluorescence spectra and quaternion principal component analysis.

Spectrochim Acta A Mol Biomol Spectrosc

Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China.

Published: November 2021

In view of the problem of the paralytic shellfish poison producing algae on-line measurement and identification, a new feature extraction method of paralytic shellfish poison producing algae measurement and identification based on quaternion principal component analysis (QPCA) is investigated. The three-dimensional (3D) fluorescence spectra of three common species of paralytic shellfish poison producing algae and eight species common of non paralytic shellfish poison producing algae are analyzed. The quaternion parallel representation model of algae three-dimensional fluorescence spectrum data is established, then the features of quaternion principal component is extracted to use as the input of k-nearest neighbor (KNN) classifier, and the identification of paralytic shellfish poison producing algae is realized by the three-dimensional fluorescence spectra coupled with quaternion principal component analysis. The results show that under the quaternion parallel representation model, the recognition accuracy rate of multiplication feature, modulus feature and summation feature is 90%, 95% and 100% respectively. Compared with that of the principal component analysis feature extraction method, the recognition accuracy rate in pure samples by summation feature of quaternion principal component is improved by 10%. This study provides an experimental basis for the accurate monitoring technology of three-dimensional fluorescence spectrum of paralytic shellfish poison producing algae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120040DOI Listing

Publication Analysis

Top Keywords

paralytic shellfish
28
shellfish poison
28
poison producing
28
producing algae
28
principal component
24
three-dimensional fluorescence
20
quaternion principal
20
component analysis
16
fluorescence spectra
12
identification paralytic
8

Similar Publications

The rapid, sensitive, and accurate detection of paralytic shellfish toxins (PSTs), such as saxitoxin (STX), is critical for protecting human health due to the frequent occurrence of toxic red tides. In this work, to address the low affinity of traditional mouse monoclonal antibodies (m-mAbs), rabbit monoclonal antibodies (r-mAbs) against STX were produced by a single B-cell sorting culture and a cross-selection strategy. The r-mAbs showed 100-fold improvement in sensitivity (IC = 0.

View Article and Find Full Text PDF

Understanding the Molecular Mechanisms of Pyrene in Governing the Critical Metabolic Circuits of .

Environ Sci Technol

January 2025

Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Pyrene, a representative polycyclic aromatic hydrocarbon, frequently occurs in aquatic environments and is associated with lethal impacts on humans and wildlife. This study examined the impact of pyrene on , a dinoflagellate responsible for harmful algal blooms, and their capability to bioremove pyrene. In a 96 h exposure experiment, effectively reduced the pyrene concentration in seawater to 50, 100, and 200 μg/L, with a combined removal efficiency of 96% in seawater.

View Article and Find Full Text PDF

The DnaJ-Hsp70-Hsp90 co-chaperon networks in scallops under toxic Alexandrium dinoflagellates exposure.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China. Electronic address:

Heat shock proteins (Hsps) are highly conserved molecular chaperones with essential roles against biotic and abiotic stressors. A large set of co-chaperons comprising J-domain proteins (DnaJs) regulate the ATPase cycle of Hsp70s with Hsp90s, together constituting a dynamic and functionally versatile network for protein folding/unfolding and regulation. Marine bivalves could accumulate and tolerate paralytic shellfish toxins (PSTs), the well-noted neurotoxins generated during harmful algal blooms.

View Article and Find Full Text PDF

OPMS - A web-based ocean pollution monitoring system.

Mar Pollut Bull

January 2025

University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada. Electronic address:

Marine pollution poses significant risks to both marine ecosystems and human health, requiring effective monitoring and control measures. This study presents the Ocean Pollution Monitoring System (OPMS), a web application designed to visualize the seasonal and annual fluctuations of marine pollutants along coastal regions in Canada. The pollutants include fecal coliform and biotoxins such as paralytic shellfish poisoning (PSP), and amnesic shellfish poisoning (ASP).

View Article and Find Full Text PDF

Recently, an instrumental analysis using LC-MS/MS has been developed and validated for paralytic shellfish toxins (PSTs) and tetrodotoxin (TTX) in bivalve molluscs in Japanese domestic and overseas. The method for 11 PSTs and TTX in scallops was validated in accordance with a previous report and CODEX-STAN. The samples were prepared by adding the standard mixture of PSTs and TTX to scallop (Patinopecten yessoensis) homogenates, extracted with 1% acetic acid and then cleaned up using an ENVI-Carb (250 mg/3 mL) cartridge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!