A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones. | LitMetric

Silicon mediated abiotic stress tolerance in plants using physio-biochemical, omic approach and cross-talk with phytohormones.

Plant Physiol Biochem

Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India. Electronic address:

Published: September 2021

Silicon (Si) is the second most abundant element present on the lithosphere and a quasi-essential element for plants' cellular and developmental processes. Si is associated with augmented germination, growth, photosynthesis, gas exchange, photosystem efficiency, and yield attributes in unstressed and stressed plants. The exogenous application of Si facilitates morpho-physiological and biochemical traits. It triggers the content of compatible osmolyte and enzymatic and non-enzymatic antioxidants, which decreases reactive oxygen species like hydrogen peroxide and superoxide. Uptake and transport of Si in plants are discussed in this review. Furthermore, the potent roles of Si in plants are emphasized. The cross-talk of Si with phytohormones such as auxins, cytokinins, gibberellins, abscisic acid, brassinosteroids, salicylic acid, nitric oxide, jasmonic acid, and ethylene is also presented. Moreover, attempts have been made to cover the contribution of Si mediated enhancement in 'omics' (genomic, transcriptomic, proteomic, metabolomic, and ionomic) approach that is useful in diminishing stress. This review aims to provide Si integration with phytohormone and utilization of 'omic approaches' to understand the role of Si in plants. This review also underlines the need for future research to evaluate the role of Si during abiotic stress in plants and the identification of gaps in understanding this process as a whole at a broader level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.06.002DOI Listing

Publication Analysis

Top Keywords

abiotic stress
8
cross-talk phytohormones
8
plants
6
silicon mediated
4
mediated abiotic
4
stress tolerance
4
tolerance plants
4
plants physio-biochemical
4
physio-biochemical omic
4
omic approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!