Cortex
School of Psychology, The University of New South Wales (UNSW Sydney), Sydney, Australia.
Published: August 2021
Sensory attenuation is the phenomenon that stimuli generated by willed motor actions elicit a smaller neurophysiological response than those generated by external sources. It has mostly been investigated in the auditory domain, by comparing ERPs evoked by self-initiated (active condition) and externally-generated (passive condition) sounds. The mechanistic basis of sensory attenuation has been argued to involve a duplicate of the motor command being used to predict sensory consequences of self-generated movements. An alternative possibility is that the effect is driven by between-condition differences in participants' sense of agency over the sound. In this paper, we disambiguated the effects of motor-action and sense of agency on sensory attenuation with a novel experimental paradigm. In Experiment 1, participants watched a moving, marked tickertape while EEG was recorded. In the active condition, participants chose whether to press a button by a certain mark on the tickertape. If a button-press had not occurred by the mark, then a tone would be played 1 s later. If the button was pressed prior to the mark, the tone was not played. In the passive condition, participants passively watched the animation, and were informed about whether a tone would be played on each trial. The design for Experiment 2 was identical, except that the contingencies were reversed (i.e., a button-press by the mark led to a tone). The results were consistent across the two experiments: while there were no differences in N1 amplitude between the active and passive conditions, the amplitude of the Tb component was suppressed in the active condition. The amplitude of the P2 component was enhanced in the active condition in both Experiments 1 and 2. These results suggest that motor-actions and sense of agency have differential effects on sensory attenuation to sounds and are indexed with different ERP components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2021.04.010 | DOI Listing |
Sci Rep
January 2025
Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany.
We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
Fibromyalgia (FM) is a complex and multifaceted condition characterized by a range of clinical symptoms, including widespread pain and a strong association with migraine headaches. Recent findings have underscored the role of oxidative stress and transient receptor potential ankyrin 1 (TRPA1) channel in migraine and FM. However, the precise mechanisms underlying the comorbidity between migraine and FM are unclear.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China.
Background: Plasmalogens, the primary phospholipids in the brain, possess intrinsic antioxidant properties and are crucial components of the myelin sheath surrounding neuronal axons. While their neuroprotective effects have been demonstrated in Alzheimer's disease, their potential benefits in spinal cord injury remain unexplored. This study investigates the reparative effects of plasmalogens on spinal cord injury and the underlying mechanisms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, Yale School of Medicine, New Haven, CT 06520.
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.