Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Auxin/indole-3-acetic acid (Aux/IAA) genes encode short lived nuclear proteins that cooperated with auxin or auxin response factor (ARF), which are involved in plant growth and developmental processes. However, it's still ambiguous how the Aux/IAA genes regulate the process governing taproot thickening in radish. Herein, 65 Aux/IAA genes were identified from the radish genome. Gene duplication analysis showed that two pairs of tandem duplication and 17 (27%) segmental duplication events were identified among Aux/IAA family genes in radish. Transcriptomic analysis revealed that most of Aux/IAA genes (52/65) exhibited differential expression pattern in different root tissues, and six root-specific genes were highly expressed in root cortex, cambium, xylem, and root tip in radish. RT-qPCR analysis showed that the expression level of RsIAA33 was the highest at cortex splitting stage (CSS), and early expanding stage (ES). Furthermore, amiRNA-mediated gene silencing of RsIAA33 indicated that it could inhibit the reproductive growth, thus promoting taproot thickening and development. These results would provide valuable information for elucidating the molecular function of Aux/IAA genes involved in taproot thickening in radish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2021.145782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!