Background: Repetitive transcranial magnetic stimulation is a promising noninvasive therapeutic tool for a variety of brain-related disorders. However, most therapeutic protocols target the anterior regions, leaving many other areas unexplored. There is a substantial therapeutic potential for stimulating various brain regions, which can be optimized in animal models.

New Method: We illustrate a method that can be utilized reliably to stimulate the anterior or posterior brain in freely moving rodents. A coil support device is surgically attached onto the skull, which is used for consistent coil placement over the course of up to several weeks of stimulation sessions.

Results: Our methods provide reliable stimulation in animals without the need for restraint or sedation. We see little aversive effects of support placement and stimulation. Computational models provide evidence that moving the coil support location can be utilized to target major stimulation sites in humans and mice.

Summary Of Findings With This Method: Animal models are key to optimizing brain stimulation parameters, but research relies on restraint or sedation for consistency in coil placement. The method described here provides a unique means for reliable targeted stimulation in freely moving animals. Research utilizing this method has uncovered changes in biochemical and animal behavioral measurements as a function of brain stimulation.

Conclusions: The majority of research on magnetic stimulation focuses on anterior regions. Given the substantial network connectivity throughout the brain, it is critical to develop a reliable method for stimulating different regions. The method described here can be utilized to better inform clinical trials about optimal treatment localization, stimulation intensity and number of treatment sessions, and provides a motivation for exploring posterior brain regions for both mice and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349553PMC
http://dx.doi.org/10.1016/j.jneumeth.2021.109261DOI Listing

Publication Analysis

Top Keywords

brain regions
12
stimulation
9
animal models
8
magnetic stimulation
8
anterior regions
8
posterior brain
8
freely moving
8
coil support
8
coil placement
8
restraint sedation
8

Similar Publications

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Background: Although anthracycline-related cardiotoxicity is widely studied, only a limited number of echocardiographic studies have assessed cardiac function in breast cancer survivors (BCSs) beyond ten years from anthracycline treatment, and the knowledge of long-term cardiorespiratory fitness (CRF) in this population is scarce. This study aimed to compare CRF assessed as peak oxygen uptake (V̇O), cardiac morphology and function, and cardiovascular (CV) risk factors between long-term BCSs treated with anthracyclines and controls with no history of cancer.

Methods: The CAUSE (Cardiovascular Survivors Exercise) trial included 140 BCSs recruited through the Cancer Registry of Norway, who were diagnosed with breast cancer stage II to III between 2008 and 2012 and had received treatment with epirubicin, and 69 similarly aged activity level-matched controls.

View Article and Find Full Text PDF

Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability.

View Article and Find Full Text PDF

Background: Physical activity and exercise are promoted worldwide as effective interventions for healthy ageing. Various exercise initiatives have been developed and evaluated for their efficacy and effectiveness among older populations. However, a deeper understanding of participants' experiences with these initiatives is crucial to foster long-term activity and exercise among older persons.

View Article and Find Full Text PDF

Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!