KDELR2 promotes breast cancer proliferation via HDAC3-mediated cell cycle progression.

Cancer Commun (Lond)

Hefei National Laboratory for Physical Sciences at Microscale, the Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China.

Published: September 2021

AI Article Synopsis

  • Histone deacetylases (HDACs) are crucial in regulating gene expression, and their dysregulation can lead to cancer, making them important targets for treatment, although HDAC inhibitors alone have had limited success in solid tumors.
  • This study aimed to find a new downstream target of HDACs to improve combination therapy outcomes by analyzing breast cancer cells for gene responsiveness to HDAC inhibitors using various methods, including transcriptome sequencing and flow cytometry.
  • The research identified KDELR2 as a novel target of HDAC3, linking its expression to poor breast cancer prognosis and demonstrating that the HDAC3-KDELR2 pathway enhances cancer cell proliferation and tumor growth by stabilizing the centrosomal protein POC5.

Article Abstract

Background: Histone deacetylases (HDACs) engage in the regulation of various cellular processes by controlling global gene expression. The dysregulation of HDACs leads to carcinogenesis, making HDACs ideal targets for cancer therapy. However, the use of HDAC inhibitors (HDACi) as single agents has been shown to have limited success in treating solid tumors in clinical studies. This study aimed to identify a novel downstream effector of HDACs to provide a potential target for combination therapy.

Methods: Transcriptome sequencing and bioinformatics analysis were performed to screen for genes responsive to HDACi in breast cancer cells. The effects of HDACi on cell viability were detected using the MTT assay. The mRNA and protein levels of genes were determined by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Cell cycle distribution and apoptosis were analyzed by flow cytometry. The binding of CREB1 (cAMP-response element binding protein 1) to the promoter of the KDELR (The KDEL (Lys-Asp-Glu-Leu) receptor) gene was validated by the ChIP (chromatin immunoprecipitation assay). The association between KDELR2 and protein of centriole 5 (POC5) was detected by immunoprecipitation. A breast cancer-bearing mouse model was employed to analyze the effect of the HDAC3-KDELR2 axis on tumor growth.

Results: KDELR2 was identified as a novel target of HDAC3, and its aberrant expression indicated the poor prognosis of breast cancer patients. We found a strong correlation between the protein expression patterns of HADC3 and KDELR2 in tumor tissues from breast cancer patients. The results of the ChIP assay and qRT-PCR analysis validated that HDAC3 transactivated KDELR2 via CREB1. The HDAC3-KDELR2 axis accelerated the cell cycle progression of cancer cells by protecting the centrosomal protein POC5 from proteasomal degradation. Moreover, the HDAC3-KDELR2 axis promoted breast cancer cell proliferation and tumorigenesis in vitro and in vivo.

Conclusion: Our results uncovered a previously unappreciated function of KDELR2 in tumorigenesis, linking a critical Golgi-the endoplasmic reticulum traffic transport protein to HDAC-controlled cell cycle progression on the path of cancer development and thus revealing a potential therapeutical target for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441056PMC
http://dx.doi.org/10.1002/cac2.12180DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cell cycle
16
cycle progression
12
hdac3-kdelr2 axis
12
cancer
9
cancer cells
8
cancer patients
8
breast
7
kdelr2
6
cell
6

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.

View Article and Find Full Text PDF

Background: Breast cancer is a significant global health issue, responsible for a large number of female cancer deaths. Early detection through breast cancer screening is crucial in reducing mortality rates. However, regions such as Sub-Saharan Africa (SSA) face challenges in identifying breast cancer early, resulting in higher mortality rates and a lower quality of life.

View Article and Find Full Text PDF

Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!