Effect of capsaicinoids in hot pepper powder on microbial community and free sugar during kimchi fermentation.

J Food Sci

Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, Republic of Korea.

Published: July 2021

Effect of capsaicinoids in hot pepper powder (HP) contains various chemical compounds, including capsaicin and dihydrocapsaicin, which are the main ingredients of the spicy taste. To evaluate the effect of HP on the microbial community in kimchi fermentation, kimchi [kimchi-HP, kimchi-HPE and kimchi-HPER made by adding HP, HP alcohol extract (HPE) and HPE residues (HPER)] was fermented at 4°C for 28 days. The pH and titratable acidity of the samples and the number of bacteria changed with fermentation time. Kimchi-HPER had significantly higher total viable and lactic acid bacteria (LAB) than other samples after 28 days of fermentation. The capsaicinoids content did not differ before and after fermentation, whereas the major free sugar content decreased, and the mannitol content increased. The principal component analysis (PCA) biplots showed similar patterns between kimchi-HP and -HPE. It was confirmed that Leuconostoc and Weissella were related to the initial fermentation, and Lactobacillus was involved in late fermentation. Kimchi-HP and kimchi-HPE increased the ratio of Lactobacillus sakei and decreased that of Leuconostoc mesenteroides compared to kimchi-HPER. Overall, these results revealed that capsaicinoids contained in HP affected Lactobacillus proliferation and mannitol increase during kimchi fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15785DOI Listing

Publication Analysis

Top Keywords

kimchi fermentation
12
capsaicinoids hot
8
hot pepper
8
pepper powder
8
microbial community
8
free sugar
8
fermentation
8
fermentation capsaicinoids
8
capsaicinoids
4
powder microbial
4

Similar Publications

Antibiotic susceptibilities, hemolytic activities, and technological properties of 46 isolates from kimchi were evaluated to select starter candidates. All strains were susceptible to clindamycin and erythromycin, while some exhibited resistance to ampicillin, chloramphenicol, gentamicin, streptomycin, and tetracycline; all were resistant to kanamycin based on the EFSA breakpoint values for species. PCR analysis did not detect resistance genes for these six antibiotics in any strain.

View Article and Find Full Text PDF

This study examines the impact of the complex microbiota from long-term fermented kimchi, used as a backslop, on fermentation dynamics. The fermentation was conducted with autoclaved (group A) and non-autoclaved (NA) starter cultures. Bacterial and fungal communities were analyzed with 16S rRNA gene V4 and ITS2 region, respectively, and metabolites were profiled using gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Some lactic acid bacteria (LAB) produce antibacterial substances such as bacteriocins, making them promising candidates for food preservation. In our study, PCZ4-a strain with broad-spectrum antibacterial activity-was isolated from traditional fermented kimchi in Sichuan. Whole-genome sequencing of PCZ4 revealed one chromosome and three plasmids.

View Article and Find Full Text PDF

Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging.

View Article and Find Full Text PDF

Kimchi is a traditional Korean dish made from fermenting vegetables. The fermentation process is crucial for enhancing its quality and flavor during storage. Approaches such as hyperspectral imaging (HSI) and chemometrics (PLS, partial least square; SVR, support vector regression) including principal component analysis (PCA), and 2-dimensional correlation spectroscopy (2D-COS) can detect key physical and chemical components and changes in total soluble solids (TSS), pH, titratable acidity (TA), salinity, and lactic acid bacteria (LAB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!