Exploiting platinum-group-metal (PGM)-free electrocatalysts with remarkable activity and stability toward oxygen reduction reaction (ORR) is of significant importance to the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs). Here, a high-performance and anti-Fenton reaction cobalt-nitrogen-carbon (Co-N-C) catalyst is reported via employing double crosslinking (DC) hydrogel strategy, which consists of the chemical crosslinking between acrylic acid (AA) and acrylamide (AM) copolymerization and metal coordinated crosslinking between Co and P(AA-AM) copolymer. The resultant DC hydrogel can benefit the Co dispersion via chelated Co-N/O bonds and relieve metal agglomeration during the subsequent pyrolysis, resulting in the atomically dispersed Co-Nx/C active sites. By optimizing the ratio of AA/AM, the optimal P(AA-AM)(5-1)-Co-N catalyst exhibits a high content of nitrogen doping (12.36 at%) and specific surface area (1397 m g ), significantly larger than that of the PAA-Co-N catalyst (10.59 at%/746 m g ) derived from single crosslinking (SC) hydrogel. The electrochemical measurements reveal that P(AA-AM)(5-1)-Co-N possesses enhanced ORR activity (half-wave potential (E ) ≈0.820 V versus the reversible hydrogen electrode (RHE)) and stability (≈4 mV shift in E after 5000 potential cycles in 0.5 m H SO at 60 ºC) relative to PAA-Co-N, which is higher than most Co-N-C catalysts reported so far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202100735 | DOI Listing |
Topical formulations containing 5-Fluorouracil (5-FU) have been proven effective in preventing the proliferation of skin cancer cells. However, their use is linked to side effects such as inflammatory and allergic reactions. Dexamethasone (Dexa) is a synthetic glucocorticoid used across allergic reactions which can be useful in preventing the 5-FU side effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Circulating histones have been identified as essential mediators that lead to hyperinflammation, platelet aggregation, coagulation cascade activation, endothelial cell injury, multiple organ dysfunction, and death in severe patients with sepsis, multiple trauma, COVID-19, acute liver failure, and pancreatitis. Clinical evidence suggests that plasma levels of circulating histones are positively associated with disease severity and survival in patients with such critical diseases. However, safe and efficient therapeutic strategies targeting circulating histones are lacking in current clinical practice.
View Article and Find Full Text PDFBiofabrication
January 2025
Division of Engineering, New York University Abu Dhabi, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, Abu Dhabi, 129188, UNITED ARAB EMIRATES.
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties.
View Article and Find Full Text PDFNano Lett
January 2025
College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China.
The separation and recovery of useful organics from wastewater have been a promising alternative to tackling water pollution and resource shortages, while strategies that truly work have rarely been explored. Herein, a reversible CO triggered sol-gel state transformation mediated selective organics uptake-release system using a surface modified carbonitride (S-CN) is proposed and exhibits remarkable organics recovery performance from wastewater. Results show that CO can serve as a cross-linker for linking S-CN particles to form a hydrogel by electrostatic interaction and hydrogen bonding, which can be recycled to the pristine sol state simply by removing the cross-linked CO with Ar purging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!