The development of transition-metal catalyzed enantioselective and diastereoselective transformations has contributed many advances in the field of synthetic organic chemistry. Particularly, stereoselective desymmetrization of prochiral cyclohexadienones represents a powerful strategy for accessing highly functionalized and stereochemically enriched scaffolds, which are often found in biologically active compounds and natural products. In recent years, several research groups including our group have made a significant progress on transition-metal catalyzed stereoselective desymmetrizations of 2,5-cyclohexadienones. In this account, we will provide an overview of the recent developments in this area employing Pd, Cu, Rh, Au, Ag, Ni, Co, and Mn-catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202100136DOI Listing

Publication Analysis

Top Keywords

transition-metal catalyzed
12
catalyzed stereoselective
8
stereoselective desymmetrization
8
desymmetrization prochiral
8
prochiral cyclohexadienones
8
cyclohexadienones development
4
development transition-metal
4
catalyzed enantioselective
4
enantioselective diastereoselective
4
diastereoselective transformations
4

Similar Publications

Catalytic H/D exchange of (hetero)arenes with early-late polyhydride heterobimetallic complexes: impact of transition metal pairs.

Dalton Trans

January 2025

Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.

Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.

View Article and Find Full Text PDF

Nickel-Catalyzed Selective Reduction of Carbon Monoxide with Magnesium Alkyl Compounds.

Chemistry

January 2025

Soochow University, College of Chemistry, Chemical Engineering and Materials Science, 199 Ren-ai Road, 215123, Suzhou, CHINA.

Research on CO activation and homologation is pivotal for promoting sustainable chemistry and the construction of Cn molecular blocks. This work reports the nickel-catalyzed reduction of CO by magnesium alkyl compounds utilizing a bimetallic Mg/Ni synergistic strategy. The exposure of β-diketiminato ligand-supported magnesium monoalkyl compounds LMgR (L = [(DippNCMe)2CH]-, Dipp = 2,6-iPr2C6H3; R = nBu, CH3, C5H9) to 1 bar of CO in the presence of 10 mol% Ni(COD)2 (COD: 1,5-cyclooctadiene) selectively afforded the CO single-insertion product [LMg(CHO)C5H8], the dimerization product [(LMg)2(μ-C2O2)(CH3)2], and the linear trimerization product [(LMg)2(μ-C3O3)(nBu)2], respectively, depending on the R group.

View Article and Find Full Text PDF

Palladium-Catalyzed Alkoxycarbonylation of Alcohols for the Synthesis of Cyclobutanecarboxylates with α-Quaternary Carbon Centers.

Org Lett

January 2025

Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.

A palladium-catalyzed alkoxycarbonylation with two different alcohols for the synthesis of cyclobutanecarboxylates bearing an α-quaternary carbon center is presented. The reaction utilizes readily accessible starting materials, tolerates a broad scope of functional groups, and provides a straightforward and efficient approach for the synthesis of a diverse array of cyclobutanecarboxylates bearing an α-quaternary carbon. Meanwhile, this strategy effectively prevents the transition-metal-catalyzed ring-opening of cyclobutanols, preserves the cyclobutane framework, and affords 1,1-disubstituted cyclobutanecarboxylates in high yields with excellent regioisomeric ratios.

View Article and Find Full Text PDF

While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.

View Article and Find Full Text PDF

The transition metal-catalyzed coupling reaction has renewed the role of ester as an electrophilic partner. In this context, we describe a synergistic Ni/Zn-catalyzed formal transesterification reaction of but-3-enyl esters with tetrahydrofuran and alkyl iodides to give 4-alkoxylbutyl esters. The aromatic and aliphatic esters are both competent electrophiles and thus broaden the substrate scope of esters in coupling reactions, because the electrophiles in previously reported work were strictly limited to aromatic ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!